Posts Tagged ‘Breker’
Tuesday, January 27th, 2015
One of the most popular posts in the history of The Breker Trekker was one discussing which conferences were most useful for verification engineers. I mentioned that Breker exhibited at the annual Design and Verification Conference (DVCon) in San Jose, and we’ve since published several popular posts about that show. It remains the most important event for us, our customers, and the functional verification industry in general. We will be there again in March, and will provide more information in an upcoming post.
I also mentioned the DesignCon show, held annually in Santa Clara, but did not list it among those that we attend. I always go and walk the floor for an hour or two to say hello to old friends and to see what’s new. However, Breker does not exhibit at this show and is highly unlikely to do so unless there are significant changes in its focus and attendance. This is not a criticism of the show, just an observation. Since DesignCon is happening this week, I thought that it might be fun to review its history and how it has changed.
(more…)
Tags: Breker, Design SuperCon, DesignCon, dvcon, EDA, functional verification, integration verification, IP, standards, TrekUVM, verification IP, VIP No Comments »
Tuesday, January 20th, 2015
Last week’s blog post raised the question of what you should run when you first map your system-on-chip (SoC) design into an emulation platform. We pointed out that trying to boot an operating system and applications immediately was a challenge because these are complex pieces of production software not designed to find lingering hardware design errors or to debug such errors easily even if detected. On many projects, the production software isn’t even available early enough to be used for design verification.
We strongly recommended running the multi-threaded, multi-processor, self-verifying C test cases generated by our Trek family of products. These “bare metal” test cases run on your SoC’s embedded processors at every stage of the project. TreSoC-Si specifically generates test cases tuned for emulation and FPGA prototype platforms. But what should you run when your fabricated chip first arrives back from the foundry? The answer is the same. TrekSoC-Si also generates test cases for silicon, ideal for use in your bring-up lab. Let’s explore this idea a bit more.
(more…)
Tags: acceleration, Breker, bring-up lab, EDA, emulation, functional verification, graph, portable stimulus, scenario model, simulation, SoC verification, test generation, TrekApp, TrekSoC-Si, use cases No Comments »
Wednesday, January 14th, 2015
Many of you are probably familiar with Lauro Rizzatti, who has written countless articles on the value of emulation for verifying system-on-chip (SoC) designs and been an occasional guest blogger here on The Breker Trekker. Lauro recently published an article in Electronic Engineering Times that really caught our attention. We could not possibly agree more with the title: “A Great Match: SoC Verification & Hardware Emulation” and, as we read through the article, were very pleased with the points he made.
Emulation involves mapping the RTL chip design into a platform that runs much like an actual chip, albeit considerably more slowly. The industry is not always consistent on its terminology, but generally if the platform is connected to a software simulation it’s being used as a simulation accelerator. In this case, the design’s inputs and outputs are connected to the simulation testbench much as they would be when running software simulation of the RTL. In emulation, there’s no simulator or testbench, and so the question becomes what to run on the design.
(more…)
Tags: acceleration, Breker, EDA, emulation, functional verification, graph, portable stimulus, scenario model, simulation, SoC verification, test generation, TrekApp, TrekSoC-Si, use cases 1 Comment »
Wednesday, January 7th, 2015
Late last year, we published a series of blog posts discussing how the world of large chip designs is moving toward multi-processor, cache-coherent SoCs. This trend is due to several sub-trends, including the addition of one or more processors, the growth in number of processors, the use of shared memory, and the addition of caches to improve memory performance. The result of this movement is clear: large chips are becoming more difficult to verify than ever.
Verification teams face challenges at every turn. It’s hard to run a complete SoC-level model in simulation, especially if the team wants to boot an operating system and run production applications. This may be feasible in emulation or FPGA prototyping platforms, but these cost a lot of money. What we’re starting to see is the truly stunning trend that some teams are taping out SoCs without ever having run the entire design together. This means that full-chip verification and debug isn’t happening until first silicon is in the lab. Let’s explore why this is happening.
(more…)
Tags: Breker, cache, coherency, DV, functional verification, IoT, IP, portable stimuls, SoC, SoC verification, TrekApp, TrekSoC, TrekSoC-Si, uvm, VIP No Comments »
Tuesday, December 30th, 2014
Last year, we wound up in December with a post on the “Top 5 Holiday Gifts for the Verification Engineer” and it proved very popular despite the holiday timing. To refresh your memory (and ours), here is the 2013 list:
#5: Relief from hand-writing verification test code.
#4: Relief from hand-writing validation diagnostics.
#3: Vertical verification IP reuse from block to system.
#2: Horizontal verification IP reuse from electronic system level (ESL) to silicon.
#1: Effortless system coverage reflecting end-use applications.
As you might expect, every one of these gifts is still available today for users of our Trek family of products. But over the last year we have added two new products, many new features, and deeper integration into existing verification flows. So we’d like to wrap up 2014 with an all-new list of holiday gifts for the verification engineer. We hope you like them as much as you liked last year’s offerings:
(more…)
Tags: Breker, coherency, coverage, EDA, functional verification, graph, reuse, scenario model, simulation, SoC, SoC verification, system coverage, test generation, transactional, TrekSoC, TrekSoC-Si, TrekUVM, use cases, uvm, verification IP, VIP No Comments »
Tuesday, December 23rd, 2014
As we predicted, last week’s guest post by Lauro Rizzatti on the origin of the names for some EDA companies and their products proved quite popular. We’ve found that mixing in some general industry news among the highly technical posts keeps our blog more lively and draws new readers, some of whom may tune in for the novelty but stay for the technology. Of course, we always welcome your comments as to whether or not we’re providing the type of content that’s interesting and valuable to you.
One naming story didn’t make it in before the deadline last week. Verific was one of the EDA companies asked about the origin of their name. President and COO Michiel Ligthart passed the question on to founder and CTO Rob Dekker, who said, “That will remain a mystery. But if you really want to know, ask the giraffe.” To find the giraffe, and maybe the answer, check out Verific’s Web site. To find the origin of the name “Breker Verification Systems” just continue reading. We promise to be less mysterious than Rob.
(more…)
Tags: Adnan Hamid, breaker, Breker, EDA, functional verification, portable stimulus, scoreboard, SoC verification, Verific No Comments »
Tuesday, December 16th, 2014
Much as we like informing you about the latest technical advances at Breker and weighing in on various industry topics, we love to take a break every so often and welcome a guest blogger. The EDACafé statistics show that these usually draw very well, and doubtless they attract a varied set of readers. This week we’re delighted to welcome back emulation expert and verification consultant Lauro Rizzatti, who has chosen to provide us with a fun look at the art and science of naming EDA companies and their products:
What’s in a name? Apparently, plenty. Let’s dispense some holiday cheer, kick back and forgo any technical discussion for a look at how a few companies in our industry got their names. Naming companies and products is big business. In fact, an entire industry is devoted to coming up with the perfect name to neatly express a company’s mission and the product portfolio. In some cases, though, companies stick closer to their employees and have contests where they can suggest names. That’s how OneSpin Solutions got its name. An R&D consultant in the U.K. came up with the name and won a case of beer for his efforts.
(more…)
Tags: Breker, Cadence, Carbon, EDA, emulation, functional verification, IPextreme, mentor, Palladium, Plunify, portable stimulus, Protium, scoreboard, Synopsys, ZeBu 2 Comments »
Thursday, December 11th, 2014
Few electronics-related topics have been more widely discussed in the past year or so than the prospects for the so-called Internet of Things (IoT), sometimes called the Internet of Everything (IoE). Hardware and software vendors have been falling all over themselves trying to ride the presumed IoT juggernaut. EDA has not been immune. In its roundup of attendee feedback from this year’s Design Automation Conference (DAC), the DeepChip site quoted a user saying, “The ubiquity of IoT. After 6 hours into DAC, I was ready to slap the next vendor who used that buzzword.”
The trumpeting of IoT was even greater at ARM TechCon, not surprising because of its focus on embedded systems. Here at Breker, we’ve used the term sparingly because it’s not really clear exactly what the IoT will become. Certainly there will be many more nodes of all sorts connected to the Internet in coming years, but there are numerous open questions. Our main interest is whether the IoT will result in an explosion of new SoC designs, and hence a broader market for our verification solutions. This blog post doesn’t provide a firm answer since none is possible yet, but it’s a topic worth addressing.
(more…)
Tags: ARM TechCon, Breker, dac, EDA, functional verification, graph, IoE, IoT, reuse, scenario model, SoC verification No Comments »
Tuesday, December 2nd, 2014
This blog focuses mostly on verification, but from time to time we like to take a look at other aspects of the EDA industry. Today we’d like to discuss high-level synthesis (HLS), its progress and status, and what’s keeping it from being a mainstream technology used for every chip design. It turns out that this topic has a lot to do with verification, so we’re not straying too far from our primary focus.
To start, let’s define what we mean by HLS in contrast to the mainstream technology of logic synthesis. Generating gates from a hardware description language (HDL) moved from a research problem to viable products around 1988. The ultimate winner among several promising companies was Synopsys, in part because they chose a register-transfer level (RTL) subset of the popular Verilog HDL as their input format. Their tools generated a gate-level netlist using the cells available in an ASIC vendor’s library.
(more…)
Tags: Breker, coverage, EDA, equivalence checking, ESL, formal analysis, functional verification, HDL, high-level synthesis, HLS, portable stimulus, reuse, RTL, scenario model, Verilog 2 Comments »
Tuesday, November 25th, 2014
Yes, we know that the title of this week’s post sounds a lot like two previous posts. We wanted to link together the two threads from those posts into a single message that we believe reflects what is happening right now in the world of complex chips. This is a short summary in line with the short week due to the Thanksgiving holiday here in the United States. The line of argument is straightforward:
- Large chips are adding embedded processors to implement complex functionality while retaining flexibility
- Single-processor chips are adding multiprocessor clusters to get better performance at a given process node
- Multiprocessor chips are using shared memory for effective data transfer and interprocess communication
- Neighbor-connected processor arrays are moving to shared memory to reduce cross-chip data latency
- Multiprocessor designs are adding caches to reduce memory access time and bypass memory bottlenecks
- Multiprocessors with caches require coherency in order to ensure that the right data is always accessed
While most of these statements are not universally true, they reflect a significant sea change that we see every day when discussing current and future projects with our customers.
(more…)
Tags: Breker, cache, Carbon, coherency, CPAK, DV, functional verification, IoT, IP, portable stimulus, SoC, SoC verification, TrekApp, TrekSoC, TrekSoC-Si, uvm, VIP No Comments »
|