Posts Tagged ‘design’
Tuesday, August 11th, 2020
In the early days of digital design, all circuits were designed manually. You would draw K-map, optimize the logic and draw the schematics. If you remember, we all did many logic optimization exercises back in college. It was time consuming and very error prone. This works fine for designs with a few hundred gates, but as the designs get larger and larger this became non-feasible.
Designs that are described at a higher level of abstraction are less prone to human errors. High-level descriptions of designs are done without significant concern regarding design constraints. The conversion from high-level descriptions to gates is done by using synthesis tools. These tools use various algorithms to optimize the design as a whole. This circumvents the problem with different designer styles for the different blocks in the design and sub-optimal design practices. Logic synthesis tools also allows for technology independent designs. Logic synthesis technology was commercialized around 2004, and since then it’s been part of the standard EDA tool chain for ASICs and FPGAs.
(more…)
Tags: acceleration, Active-HDL, design, embedded, Emulation, FPGA, FPGA Simulation, HDL, HES-DVM, Intel, Synthesis, systemverilog, verilog, Xilinx No Comments »
Monday, March 26th, 2018
As an Applications Engineer I visit lots of potential customers, or talk to them at trade shows, who are doing FPGA designs but don’t own a commercial simulator. I ask them why that is. Most of the time it is budgetary restrictions. They don’t have funds to buy additional tools. I understand their situation and point out to them that at Aldec we have a very cost-effective simulator. But that is not what I want to talk about in this blog. I want to talk about engineers who say: “I am happy with the simulator my FPGA vendor provided me”, or “My simulations only take 15-20 minutes to run, I don’t think I need a faster simulator”, or “We don’t run simulations”.
That last response haunts me the most. For instance, at a recent site visit I was told: “We just load the design on our FPGA and test it out”. I asked how long does a full test iteration (i.e. program FPGA -> test -> debug -> re-code -> re-program) takes. They said about an hour or two, depending on the bug. I then asked how much of that time spent just running synthesis and programming the board? They said about 30 minutes.
Next, I proceeded to explain the benefits of running simulations in such scenario.
(more…)
Tags: debugging, design, FPGA Simulation, Riviera-PRO, simulation, verification 1 Comment »
Thursday, January 25th, 2018
A high-performance router is an absolute must if you want to run a high-traffic network in which different devices need to transfer and receive data as fast as possible. A router with a powerful processor and sufficient local memory reduces data hiccups and minimizes message loading and buffering times. But is that enough?
Because of the huge amount of data that people now generate – combined with the wealth of communication protocols, such as Wi-Fi, Ethernet, USB, SFP, QSFP – high-performance, hardware re-programmable routers are becoming popular. That hardware re-programmability is being delivered through FPGAs, and utilizing one as the main ‘processor’ on the router makes it easy to add or modify desired modules such as encryption and compression.
(more…)
Tags: acceleration, design, digital, embedded, Emulation, FPGA, hardware, industrial, prototyping, SoC, SoC and ASIC Prototyping, Xilinx No Comments »
Tuesday, October 17th, 2017
Creativity and innovation, which lead the society to success, rest on the foundational institutions such as schools and universities. They provide fertile soil to seed, grow and flourish enterprises. To harvest more within an industry, the ecosystem needs to be enriched where the seeds are grown. Considering that the university’s courses are the nutrition to student, they need to be designed in a productive manner as they will provide the next generation of engineers. By providing the necessary platform in addition to the rich and informative tutorials, the quality of the input information for students would be assured. Particularly in the field of Electrical and Computer Engineering, it is important that students get as much hands on experience as possible, and tackle design challenges – such as HW/SW co-design and co-verification – before entering the job market; for their own benefit as well as the industry as a whole.
In this blog, you will become familiar with the TySOM Education kit (TySOM EDU) package designed for the university courses related to hardware design and embedded system design researches.
The TySOM EDU contains a TySOM embedded development board, Riviera-PRO advanced hardware simulator and informative tutorials and reference designs. Although it is possible to choose any development board from the TySOM embedded development board family, the TySOM-1A-7Z010 would be the most cost-effective solution for most university projects.
TySOM-1A-7Z010 (ZynqTM) is a ready-to-use and feature-rich embedded development board which provides the required peripherals to tackle both basic and advanced Zynq-based projects. The XC7Z010 is based on the Xilinx® All Programmable System-on-Chip (SoC) architecture, which integrates a dual-core ARM Cortex-A9 processor with Xilinx 7-series Field Programmable Gate Array (FPGA) logic. Coupling the device to a rich set of peripherals for connectivity, communication and multimedia, makes this board ideal for university projects requiring HW/SW co-design. For the rest of this article, visit the Aldec Design and Verification Blog.
Tags: co-simulation, design, digital, embedded, FPGA, HDL, prototyping, Riviera-PRO, simulation, SoC, university, Xilinx No Comments »
Monday, April 10th, 2017
Most everyone would agree how important FPGA prototyping is to test and validate an IP, sub-system, or a complete SoC design. Before the design is taped-out it can be validated at speeds near real operating conditions with physical peripherals and devices connected to it instead of simulation models. At the same time, these designs are not purely hardware, but these days incorporate a significant amount of the software stack and so co-verification of hardware and software is put at high importance among other requirements in the verification plan.
However, preparing a robust FPGA prototype is not a trivial task. It requires strong hardware skills and spending a lot of time in the lab to configure and interconnect all required peripheral devices with an FPGA base board. Even more difficult is to create a comprehensive test scenario which contains procedures to configure various peripherals. Programming hundreds of registers in proper sequence and then reacting on events, interrupts, and checking status registers is a complex process. The task which is straightforward during simulation, where full control over design is assured, becomes extremely hard to implement in an FPGA prototype. Facing this challenge, verification engineers often connect a microprocessor or microcontroller daughter card to the main FPGA board. The IP or SoC subsystem you are designing will be connected with some kind of CPU anyhow, so this way seems natural. Having a CPU connected to the design implemented in an FPGA facilitates creating programmatically reconfigurable test scenarios and enables test automation. Moreover, the work of software developers can be now reused as the software stack with device drivers can become a part of the initialization procedure in the hardware test.. The software can become a part of the initialization procedure in the hardware test. If that makes sense to you, then why not use an FPGA board that has all you need – both FPGA and the CPU?
(more…)
Tags: Active-HDL, ARM, asic, co-simulation, design, FPGA, fpga prototyping solution, hardware, prototyping, SoC, SoC and ASIC Prototyping, soc design, Xilinx No Comments »
Tuesday, October 27th, 2015
Just in time for Halloween, Aldec has released a popular past webinar Don’t be Afraid of UVM for Hardware Designers on YouTube.
Designers are usually very busy doing their work and have little time left for experimentation with new methodologies. Unfortunately for them, official documentation of UVM (Universal Verification Methodology) was written by Verification Engineers for Verification Engineers, concentrating on high-level features and completely neglecting lower-level details such as connecting UVM testbench to your design.
Our webinar starts with solid review of SystemVerilog interfaces with special attention paid to Virtual Interfaces. Then it proceeds to Sequences and other Data Items, processed by Sequencers and fed to the design under test via Drivers. The role of Monitors and Scoreboards in analysis of results is explained. The presentation concludes with environment configuration and running test from the top-level module.
For the rest of this article, visit the Aldec Design and Verification Blog.
Tags: design, hardware, resources, systemverilog, uvm, verification, Webinar, YouTube No Comments »
Wednesday, July 16th, 2014
If they’re being honest, anyone who has verified an FPGA under strict DO-254 guidance will tell you that it is stressful. Show me an engineer on their first DO-254 project – and I’ll show you someone pulling out their hair and downing what is probably their 5th cup of coffee while these important questions weigh heavy on their minds:
Have we reviewed all FPGA requirements and validated derived FPGA requirements? Do we have a good record of the review activities?
Do I have a test for each functional FPGA requirement? What’s the status of the tests? How do I track the progress and document the results?
(more…)
Tags: aviation, coverage, design, do-254, DO-254 Guidance, FPGA, HDL Design, Impact Analysis, Requirements-Based Verification, safety-critical, Testbench, Traceability, Validation, verification No Comments »
Tuesday, June 24th, 2014
Aldec has been working closely with Elbit Systems in Israel on an important DO-254 project for some time now. Using Aldec’s specialized solution DO-254/CTS™ as their primary FPGA physical testing platform, Elbit recently passed a critical EASA verification audit for DO-254/ED-80 DAL A FPGAs.
As a DO-254 evangelist, I have long recognized the value and benefits of Aldec’s solution to the avionics industry, so it was particularly rewarding to hear these words from Moshe Porian, Logic Design Verification Group Leader at Elbit Systems Aerospace Division, “Aldec helped us solve several of our verification challenges. This is the first time in Elbit’s history that we have been able to bring more than 5 FPGA devices to the audit.”
DO-254/CTS solved Elbit’s major challenges, enabling them to test in hardware 100% of FPGA pin-level requirements. As opposed to developing software test vectors, Elbit used their simulation testbench as test vectors for FPGA at-speed testing which cut their development costs. For the rest of this article, visit the Aldec Design and Verification Blog.
Tags: Aldec, design, do-254 project, do-254/cts, easa verification audit for do-254/ed-80 dal a fpgas, elbit systems aerospace division, elbit systems in Israel, FPGA, fpga at-speed testing, fpga physical testing platform, fpga pin-level requirements, logic design verification group leader, simulation, simulation testbench, software test vectors, test vectors, Traceability, verification No Comments »
Thursday, May 15th, 2014
Alex Grove, FirstEDA Applications Specialist, was kind enough to author a guest blog for Aldec. Here’s an excerpt:
Here in Europe, I recently had the opportunity to work with Jim Lewis, OS-VVM Chief Architect and IEEE 1076 Working Group Chair, on the first Advanced VHDL Testbenches & Verification training course. This training, held in Bracknell, UK, was attended by engineers from several major European system companies who design and verify programmable devices (FPGAs). VHDL is by far the dominate language used by Europe’s system companies for the design and verification of FPGAs, however it is unclear to many how to enhance their verification with VHDL. What I have found is that experienced FPGA design engineers (including myself) are not utilising the VHDL language for verification.
Jim Lewis introduces VHDL’s verification capabilities, including new VHDL 2008 features and the Open Source VHDL Verification Methodology (OSVVM). OSVVM provides a methodology for testbench development and verification packages that provide functional coverage and random value generation. (more…)
Tags: advanced vhdl testbenches, Aldec, bist, built-in self test, coverage, design, design and verify programmable devices, finite-state machine, FPGA, fpga design engineers, fsm, functional coverage, ieee 1076 working group chair, ieee 1149.1 tap, open source vhdl verification methodology, os-vvm chief architect, osvvm, random value generation, randomization, test access port controller, test mode select signal, testbench development, tms signal, verification, verification packages, verification training course, verification with vhdl, VHDL, vhdl 2008 features, vhdl osvvm CoveragePkg to a fsm No Comments »
|