Open side-bar Menu
 Aldec Design and Verification

Posts Tagged ‘embedded’

SynthHESer – Aldec’s New Synthesis Tool

Tuesday, August 11th, 2020

In the early days of digital design, all circuits were designed manually. You would draw K-map, optimize the logic and draw the schematics. If you remember, we all did many logic optimization exercises back in college. It was time consuming and very error prone. This works fine for designs with  a few hundred gates, but as the designs get larger and larger this became non-feasible.

Designs that are described at a higher level of abstraction are less prone to human errors. High-level descriptions of designs are done without significant concern regarding design constraints. The conversion from high-level descriptions to gates is done by using synthesis tools. These tools use various algorithms to optimize the design as a whole. This circumvents the problem with different designer styles for the different blocks in the design and sub-optimal design practices. Logic synthesis tools also allows for technology independent designs. Logic synthesis technology was commercialized around 2004, and since then it’s been part of the standard EDA tool chain for ASICs and FPGAs.

(more…)

How to develop an FPGA-based Embedded Vision application for ADAS, series of blogs – Part 1

Wednesday, February 28th, 2018

When should we use the term “Vision for Everything”, as vision-based applications are entering various industries? It’s been a few years since the emergence of Embedded Vision and we see that it’s being used in a wide range of applications including Security, Medical, Smart homes, Robotics, Transportations, Automotive Driver Assistance Systems (ADAS) and Augmented Reality (AR).

This is the first in a series of blogs explaining what you need to know to start designing Embedded Vision applications which can be used in ADAS, from choosing the right device and tools to demystifying the vision algorithms used in automotive applications and how to implement them into FPGAs.

ADAS consists of two main parts, vision and sensor fusion. Cameras used in a smart car can provide the information such as object detection, classification and tracking. However, they don’t provide the distance between the vehicle and obstacles needed to prevent a collision. To do that, sensors such as LIDAR or RADAR come to play.

In this series of blogs, we will mainly focus on the vision side of the ADAS; but will cover sensor fusion in the future. The main goal of this series of blogs is to give an in-depth knowledge of Aldec’s complete ADAS reference design which includes 360-Degree Surrounding View, Driver Drowsiness Detection and Smart-Rear View.
(more…)

How to Design the New Generation of Reprogrammable Router/Switch Using Zynq FPGA

Thursday, January 25th, 2018

A high-performance router is an absolute must if you want to run a high-traffic network in which different devices need to transfer and receive data as fast as possible. A router with a powerful processor and sufficient local memory reduces data hiccups and minimizes message loading and buffering times. But is that enough?

Because of the huge amount of data that people now generate – combined with the wealth of communication protocols, such as Wi-Fi, Ethernet, USB, SFP, QSFP – high-performance, hardware re-programmable routers are becoming popular. That hardware re-programmability is being delivered through FPGAs, and utilizing one as the main ‘processor’ on the router makes it easy to add or modify desired modules such as encryption and compression.

(more…)

Zynq-based Embedded Development Kit for University Programs

Tuesday, October 17th, 2017

Creativity and innovation, which lead the society to success, rest on the foundational institutions such as schools and universities. They provide fertile soil to seed, grow and flourish enterprises. To harvest more within an industry, the ecosystem needs to be enriched where the seeds are grown. Considering that the university’s courses are the nutrition to student, they need to be designed in a productive manner as they will provide the next generation of engineers. By providing the necessary platform in addition to the rich and informative tutorials, the quality of the input information for students would be assured. Particularly in the field of Electrical and Computer Engineering, it is important that students get as much hands on experience as possible, and tackle design challenges – such as HW/SW co-design and co-verification – before entering the job market; for their own benefit as well as the industry as a whole.

In this blog, you will become familiar with the TySOM Education kit (TySOM EDU) package designed for the university courses related to hardware design and embedded system design researches.

The TySOM EDU contains a TySOM embedded development board, Riviera-PRO advanced hardware simulator and informative tutorials and reference designs. Although it is possible to choose any development board from the TySOM embedded development board family, the TySOM-1A-7Z010 would be the most cost-effective solution for most university projects.

TySOM-1A-7Z010 (ZynqTM) is a ready-to-use and feature-rich embedded development board which provides the required peripherals to tackle both basic and advanced Zynq-based projects. The XC7Z010 is based on the Xilinx® All Programmable System-on-Chip (SoC) architecture, which integrates a dual-core ARM Cortex-A9 processor with Xilinx 7-series Field Programmable Gate Array (FPGA) logic. Coupling the device to a rich set of peripherals for connectivity, communication and multimedia, makes this board ideal for university projects requiring HW/SW co-design.  For the rest of this article, visit the Aldec Design and Verification Blog.

Introduction to Zynq™ Architecture

Friday, August 25th, 2017

The history of System-on-Chip (SoC)

Do we prefer to have a small electronic device or a larger one? The answer will often be “the smaller one”. However, before the commercialization of small radios, many people were interested in having big radios for the extravagance. Subsequently, at the beginning of the emergence of compact radios, those who preferred the flamboyance of large radios refused using compact radios. Slowly, but surely, the overwhelming benefits of owning a more compact radio led to the proliferation of smaller devices. These days the progression of the technology enables cutting-edge companies to encapsulate different parts of a system into increasingly smaller devices, all the way down to a single chip, which added the System-on-Chip (SoC) concept to the electronics world. By way of an example of a SoC, I will explain the Zynq-7000 all-programmable SoC. It consists of two hard processors, programmable logic (PL), ADC blocks and many other features all in one silicon chip.

Before the invention of the Zynq, processors were coupled with a Field Programmable Gate Array (FPGA) which made communication between the Programmable Logic (PL) and Processing System (PS) complicated. The Zynq architecture, as the latest generation of Xilix’s all-programmable System-on-Chip (SoC) families, combines a dual-core ARM Cortex-A9 with a traditional (FPGA). The interface between the different elements within the Zynq architecture is based on the Advanced eXtensible Interface (AXI) standard, which provides for high bandwidth and low latency connections.

Before implementing the ARM processor inside the Zynq device, users were using a soft core processor such as Xilinx’s Microblaze. The main advantage of using Microblaze was, and remains, the flexibility of the processor instances within a design. On the other hand, the inclusion of hard processor in Zynq delivers significant performance improvements. Also, by simplifying the system to a single chip, the overall cost and physical size of the device are reduced.

Zynq Design Flow

The design flow for the Zynq architecture has some steps in common with a regular FPGA. The first stage is to define the specifications and requirements of the system. Next, during the system design stage, the different tasks (functions) are assigned to implementation in either PL or PS which is called task partitioning. This stage is important because the performance of the overall system will depend on tasks/functions being assigned for implementation in the most appropriate technology: hardware or software. For the rest of this article, visit the Aldec Design and Verification Blog.

Aldec Springs Into Action: A look back at a busy show season

Thursday, April 6th, 2017

Aldec at DVConIt’s been a busy season for Aldec. The weather has warmed here in the desert and as the trees and greenery enliven in spring, Aldec has also been bursting with activity. From DVCon to the International Symposium on FPGAs in the US to Embedded World and CTIC in Europe, there have been some exciting developments from Aldec in verification, embedded systems, and DO-254.

These major events and conferences have been a great time to provide some updates on the latest Aldec endeavors and to provide an in-person look at the capability of our tools.

The DVCon U.S. Conference and Exhibition held in San Jose, California, holds a special place in my heart because it was the first industry conference I attended after starting my career in EDA. Every year I enjoy returning in order to see the latest verification advancements and to speak with those who are hard at work trying to improve verification efforts. Portable stimulus was a hot topic and it seemed like emulation was growing in popularity. This year we brought our Hardware Emulation Solutions (HES™) so that people could get an in-person look at our hardware. We showed off the speed benefits of emulation over traditional simulation by hooking up a UVM testbench to an in-house network-on-chip design running in our FPGA boards. As design sizes increase, I think emulation will become a more widely adopted solution to the simulation bottleneck.

(more…)

It’s Time to Get Your University in Sync with Zynq: Insight From a College Student

Wednesday, August 17th, 2016

Today’s article is authored by Zach Nelson, Aldec FAE Intern. Zach is a Field Application Engineer Intern with Aldec, working in tandem with his fellow interns to develop hardware specific applications. He is set to graduate with a B.S. in Electrical Engineering from University of Nevada, Las Vegas in 2017. His field interests include ASIC Design & Solid State Electronics.

It’s time for Universities to say goodbye to their outdated FPGA boards and introduce the Xilinx® Zynq™ chip. The Zynq chip is a device which combines an FPGA fabric with a processing unit. The Zynq chip is very similar to other FPGA devices, but it does have a few key advantages and features that can enhance your designs and increase its capabilities.

What can Zynq do?

The Zynq chip has applications in the design fields related to:

  • FPGA
    • Digital Design
    • VHDL/Verilog
  • Embedded Systems
    • Robotics
    • IoT
    • Factory Automation
  • Algorithm Implementations
    • Signal Processing
    • Video/Image Processing

FPGA

The Programmable-Logic can be used in isolation of the processor which allows it to be used like a general FPGA device which can help support the topics covered in any VHDL/Verilog class as well as Digital Design. It is much easier to facilitate growth and learning in a project-based curiculum when you have a device such as the Zynq to interface with.

(more…)

Introduction to AXI Protocol: Understanding the AXI interface

Wednesday, August 17th, 2016

Introduction-to-AXI-ProtocolToday’s article is authored by Brandon Wade, Aldec FAE Intern. Brandon is currently working on his B.S. in computer engineering from the University of Nevada, Las Vegas and is set to graduate in 2017. His interests include processor architectures, and the logic of these hardware designs. As a field application engineer intern, Brandon has worked extensively with Aldec’s own simulation software such as Active-HDL and Riviera-PRO. 

When part of a team, your group can become more capable than a single individual, but only if your team can work together and communicate effectively. Having members of a group talk over each other leads to nothing but a cacophony, and nothing gets done. For this reason protocols need to be established, such as letting others speak without interruption, or facing those you are addressing. The same is necessary with electronics, especially with system on chip (SoC) designs.

The protocol used by many SoC today is AXI, or Advanced eXtensible Interface, and is part of the ARM Advanced Microcontroller Bus Architecture (AMBA) specification. It is especially prevalent in Xilinx’s Zynq devices, providing the interface between the processing system and programmable logic sections of the chip.

(more…)

Reprogrammable, reprogrammable, reprogrammable: What’s great about FPGAs!

Friday, January 22nd, 2016

I-loveFPGAsI like FPGAs. My first experience with an FPGA was my university final year project where I demonstrated BIST with four Xilinx© 3000 devices; this was before FPGAs had JTAG built in. Filling up these devices with ViewDraw schematics required many hours in front of a terminal.   Fast track to today’s advances such as Xilinx UltraScale and Vivado HLx, and I hope you would agree things have moved on quite a bit.

 

Amid all this changes, however, there are some things that have remained constant. Those are the three things that are great about FPGAs: they are reprogrammable, reprogrammable, and, they are reprogrammable!

So how is this capability utilized? Here are three examples:

 

Electronic products using FPGAs:

I think it is important not look at FPGAs as some poor cousin of an ASIC. This view is from the days of LSI Logic and Xilinx marketing battles, when FPGAs were used for mopping up “glue logic”. Today an FPGA provides a massively parallel programmable digital platform with a lot of silicon IP, such as high-performance interfaces. This capability is widely used by many industries now; it is not solely driven by the volume of parts. Today, you even find FPGAs in consumer products.

(more…)

How HES™ Technology Solved Problems for These Users

Monday, October 20th, 2014

HES_USE_CASESRecognizing a problem that engineers are facing and developing a solution has been Aldec’s rather straight-forward mantra for going on thirty years now. Aldec launched its Hardware Emulation Solutions (HES) product in 2003, integrating RTL simulation with hardware emulation, and offering hardware and software design teams the ability to work concurrently. Today HES™ is a fully automated and scriptable HybridVerification and Validation environment for SoC and ASIC designs capable of bit-level simulation acceleration, SCE-MI 2.1 transaction emulation, hardware prototyping, and virtual modeling.

(more…)




© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise