Posts Tagged ‘UVC’
Thursday, August 7th, 2014
In our last blog post, we worked our way up the conclusion that our TrekSoC product can be used to verify designs that do not contain embedded processors. As we noted, there is not a widely accepted industry term for such devices. For the moment, let’s call them “transactional designs” since the majority of them take transactions in at one end and generate transactions at the other end, sometimes for two very different protocols, and are often bidirectional in nature.
The technological argument is simple. Most SoCs also have I/O ports, both standard buses and proprietary protocols, and TrekSoC must be able to talk to them, coordinate among them, and synchronize their transactions with generated C code running in the embedded processors. A purely transactional chip and testbench form a subset of the challenge for which TrekSoC is designed, so it’s not surprising that we can help. Today’s post fills in some more details.
(more…)
Tags: Breker, coverage, EDA, functional verification, graph, portable stimulus, reuse, scenario model, scoreboard, sequencer, SoC verification, transactional, TrekSoC, UVC, uvm No Comments »
Wednesday, July 30th, 2014
In our previous two posts, we went into considerable detail on the vertical reuse of verification information from IP block to subsystem to system. We have focused on how graph-based scenario models enable simple composition as you move up the design hierarchy. This type of reuse is not possible with traditional testbench elements such as UVM scoreboards and virtual sequencers. Once again, this is not a slam against the UVM, but rather a basic trait of constrained-random testbenches.
We skimmed over one aspect of vertical reuse: the transition from a “headless” SoC subsystem with no CPU to full-chip simulation with our automatically generated multi-threaded C test cases running on the SoC”s embedded processors. We also skipped the question of whether or not our graph-based scenario models can generate full-chip tests for chips that do not contain processors and are not classified as SoCs. This post links these ideas together and answers the question. (more…)
Tags: Accellera, Breker, coverage, EDA, functional verification, graph, portable stimulus, pwg, reuse, scenario model, scoreboard, sequencer, SoC verification, standards, UVC, uvm, working group No Comments »
Tuesday, July 22nd, 2014
In our last post, we went into quite a detailed discussion of how the Accellera Universal Verification Methodology (UVM) has limitations on reuse. Specifically, we showed why it is not possible to compose scoreboards and virtual sequencers together as you move up the design hierarchy from verifying blocks to verifying clusters or complete chips. In the process, information about how connected blocks communicate is lost and must be recreated in the higher-level sequencer.
We also claimed that graph-based scenario models provide more effective reuse, specifically because lower-level graphs can be composed into a higher-level graph as blocks are combined and you move up the chip hierarchy vertically. Block-level graphs compose cluster-level graphs, and cluster-level graphs compose full-chip graphs. In today’s post, we take the same example used last time and show how reuse works with graph-based scenario models rather than pure UVM testbenches.
(more…)
Tags: Accellera, Breker, coverage, EDA, functional verification, graph, portable stimulus, pwg, reuse, scenario model, scoreboard, sequencer, SoC verification, standards, UVC, uvm, working group 2 Comments »
Thursday, July 17th, 2014
Over the lifetime of The Breker Trekker, we’ve published numerous posts about the inherent benefits of graph-based scenario models for verification. These models allow you to pull on a rope rather than push it. They allow you to begin with the end in mind, solving backwards to determine the necessary inputs. They support advanced verification planning and debug. They make verification modeling more pleasant. They enable both horizontal reuse over the course of a project and vertical reuse from IP block to subsystem to system.
Today we’d like to dig into a particular aspect of vertical reuse that we have not addressed in detail before. One of the goals of verification standards has been to define testbench elements that are reusable. This goal was very much in mind when the Accellera working group standardized the Universal Verification Methodology (UVM). By establishing a standard architecture, nomenclature, and application programming interface (API), UVM components are highly reusable from project to project and even company to company. However, the UVM fails at other forms of reuse.
(more…)
Tags: Accellera, Breker, coverage, EDA, functional verification, graph, portable stimulus, pwg, reuse, scenario model, scoreboard, sequencer, SoC verification, standards, UVC, uvm, working group 1 Comment »
Tuesday, February 4th, 2014
Our last post on the relationship between the Universal Verification Methodology (UVM) and Breker’s technology was very popular. In only a week, it has become the fifth-most-read post in the nine-month history of The Breker Trekker blog. Clearly people are interested in the UVM and what strengths and weaknesses it brings to the ever more complex world of SoC verification.
This week we’d like to continue the discussion with a topic that we did not address last week: how the UVM offers an alternative to running embedded code by replacing one or more of the processors in the SoC with a verification component (VC). Our CEO, Adnan Hamid, addressed this topic in an Electronic Design article last November. We’d like to revisit some of the key points of that article in the context of last week’s UVM discussion
(more…)
Tags: Breker, EDA, emulation, functional verification, reuse, scenario model, simulation, SoC verification, system coverage, test generation, TrekSoC, TrekSoC-Si, UVC, uvm, verification component, verification IP, VIP No Comments »
|