Open side-bar Menu
 The Breker Trekker

Archive for July, 2014

Verification Reuse from Transactional Testbenches to Embedded C Code

Wednesday, July 30th, 2014

In our previous two posts, we went into considerable detail on the vertical reuse of verification information from IP block to subsystem to system. We have focused on how graph-based scenario models enable simple composition as you move up the design hierarchy. This type of reuse is not possible with traditional testbench elements such as UVM scoreboards and virtual sequencers. Once again, this is not a slam against the UVM, but rather a basic trait of constrained-random testbenches.

We skimmed over one aspect of vertical reuse: the transition from a “headless” SoC subsystem with no CPU to  full-chip simulation with our automatically generated multi-threaded C test cases running on the SoC”s embedded processors. We also skipped the question of whether or not our graph-based scenario models can generate full-chip tests for chips that do not contain processors and are not classified as SoCs. This post links these ideas together and answers the question. (more…)

A Guide to Composition for Graph-Based Scenario Models

Tuesday, July 22nd, 2014

In our last post, we went into quite a detailed discussion of how the Accellera Universal Verification Methodology (UVM) has limitations on reuse. Specifically, we showed why it is not possible to compose scoreboards and virtual sequencers together as you move up the design hierarchy from verifying blocks to verifying clusters or complete chips. In the process, information about how connected blocks communicate is lost and must be recreated in the higher-level sequencer.

We also claimed that graph-based scenario models provide more effective reuse, specifically because lower-level graphs can be composed into a higher-level graph as blocks are combined and you move up the chip hierarchy vertically. Block-level graphs compose cluster-level graphs, and cluster-level graphs compose full-chip graphs. In today’s post, we take the same example used last time and show how reuse works with graph-based scenario models rather than pure UVM testbenches.

(more…)

A Guide to Composition for Testbench Elements

Thursday, July 17th, 2014

Over the lifetime of The Breker Trekker, we’ve published numerous posts about the inherent benefits of graph-based scenario models for verification. These models allow you to pull on a rope rather than push it. They allow you to begin with the end in mind, solving backwards to determine the necessary inputs. They support advanced verification planning and debug.  They make verification modeling more pleasant. They enable both horizontal reuse over the course of a project and vertical reuse from IP block to subsystem to system.

Today we’d like to dig into a particular aspect of vertical reuse that we have not addressed in detail before. One of the goals of verification standards has been to define testbench elements that are reusable. This goal was very much in mind when the Accellera working group standardized the Universal Verification Methodology (UVM). By establishing a standard architecture, nomenclature, and application programming interface (API), UVM components are highly reusable from project to project and even company to company. However, the UVM fails at other forms of reuse.

(more…)

Would You Rather Push on a Rope or Pull It?

Tuesday, July 8th, 2014

Last week we talked once again about our familiar mantra to “begin with the end in mind” when performing SoC verification. We described the enormous value that graph-based scenario models provide by enabling automatic test case generation from desired results. TrekSoC can walk the graph backwards, from result to inputs, and generate the C code necessary to exercise true user-level test cases across multiple threads and multiple heterogenous processors.

It’s clear even to the biggest fans of the Universal Verification Methodology (UVM) that this standard breaks down at the full-chip level for an SoC containing one or more embedded processors. The UVM, for all its good points, does not encompass code executing on processors and does not provide any guidance on how to link such code with the testbench that connects the chip’s inputs and outputs. The value of scenario models for SoCs is clear. But what about large chips without embedded processors? Does Breker have a role to play there as well?

(more…)




© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise