By David Abercrombie
In motor car racing, many people think the win happens on the track, with lightning-fast pit stops ensuring the fastest car takes the black and white checkered flag at the finish line. In reality, the win happened long ago, in the garage, as the car was built and tested and rebuilt. The same is true in integrated circuit (IC) design. Getting a design through a successful tapeout on schedule isn’t just the result of signoff verification. It begins much earlier, back in the design and implementation stages. Finding and correcting critical errors in these early design stages helps design teams make adjustments quickly while layouts are still more open and flexible, avoiding time-consuming and complex fixes during signoff that can play havoc with delivery schedules.
But what happens when that early verification doesn’t match signoff verification? Despite all the work designers put in during the design stages, they may find themselves still trying to fix those hard errors, only now they’re constrained by layout restrictions, and under the gun to meet the schedule. Calibre® shift left (early design-stage) solutions bring industry-leading Calibre signoff-quality verification and design optimization into the design and implementation environments. Shift left verification and optimization can help design teams minimize those late-stage signoff iterations while still delivering high performance, high reliability designs. Using the same qualified rule decks and underlying engines used by the signoff toolsuite, Calibre shift left tools and technology deliver targeted verification that hones in on those errors most critical in early-stage designs, provide thorough analysis of complex design constraints, support designers with guided debugging to enable optimal fixes that remain signoff-compliant throughout the design flow, and apply selective automated design optimizations, all within a user-friendly toolset integrated into the designer’s design or implementation environment.