Posts Tagged ‘RTL’
Thursday, September 23rd, 2021
As regular readers know, Agnisys is the leader in specification automation. From various forms of executable design specifications, we generate the SystemVerilog RTL design, Universal Verification Methodology (UVM) testbench models for simulation, assertions for formal analysis, C/C++ code for embedded processors, sequences for both UVM and C/C++, and user documentation. The designers incorporate the RTL code into their chip, the verification engineers use the UVM models, sequences, and assertions to verify the RTL design, and the embedded programming team uses the C/C++ code as a starting point for their firmware and drivers.
Eventually, the system must be validated with the hardware and production software running together. Ideally, this happens using an emulator or an FPGA prototype before tapeout, so that no surprises are found when the software runs on the fabricated chip in the bring-up lab. However, there is a step in between hardware verification and system validation, often called system-level verification or early validation, that’s essential for complex system-on-chip (SoC) designs. At this stage, the verification team runs both a UVM testbench and embedded C/C++ test code together in simulation.
(more…)
Tags: C/C++, RTL, testbench, UVM No Comments »
Wednesday, June 23rd, 2021
If there’s one good thing to emerge amid all the challenges of the last year and a half, it’s improved technology for remote learning. On-line talks, webinars, and podcasts are nothing new, but with so many people working at home the importance of virtual options has grown. When was the last time you had a vendor physically visit your company in person to talk about a new tool or technology? When was the last time you attended an in-person conference or seminar? For many engineers, it has been well over a year since we were even in the office. We’ve relied on the web for just about everything.
At Agnisys, we’ve been doing regular webinars since well before the pandemic and they have been highly effective and successful. We offered a series last year that proved quite popular, and you may have noticed that we recently announced a new series that began a few weeks ago. With interest in remote learning at an all-time high, we fully expect a great turnout for all our upcoming virtual events. Even if you’ve attended some of our webinars before, I encourage you to check out our new series because we’re taking a dramatically different approach to the material.
(more…)
Tags: RTL, SoC, SystemRDL No Comments »
Monday, May 31st, 2021
In a post last year, I discussed our recently announced Standard Library of IP Generators (SLIP-G™). This library has proven to be quite popular with our users, and that’s not surprising. Reuse plays a big role in system-on-chip (SoC) development since no team can afford to design and verify a billion or more gates from scratch. There’s no chance of this trend reversing, so we see a lot of interest in many types of design and verification IP, especially those that implement industry standards. We’ve been hard at work supporting users and expanding our IP titles, so I’d like to revisit the topic in this post.
It’s important to stress that we offer a library of IP generators, not fixed IP blocks. This is essential given the diversity of applications that use SoCs as well as the mix of technologies (FPGA, ASIC, and full custom) used to build these complex chips. Every chip project has its own requirements for its IP blocks, with a selection of features often arising from tradeoffs between speed, area, and power. Only a generation-driven solution can satisfy these needs. Options and customization must be built into the generators so that users are never tempted to manually edit register-transfer-level (RTL) design files.
(more…)
Tags: RTL, SemiEDA 1 Comment »
Tuesday, April 27th, 2021
It’s hard to think of any electronic design automation (EDA) innovation that’s had more impact than the Universal Verification Methodology (UVM). After decades of ad hoc designer-centric simulation and a few advanced verification teams using more automated methods, the UVM brought everyone involved in chip development into a new era. Verification engineers have ready access to object-oriented programming, constrained-random stimulus, self-checking tests, reusable models, functional coverage, assertions, and more. Both the UVM itself and the SystemVerilog language upon which it is built are industry standards, allowing teams to mix EDA tools from multiple vendors, and easily switch tools if they wish.
(more…)
Tags: RTL, SemiEDA, SoC design, SystemRDL, UVM RAL No Comments »
Monday, February 3rd, 2020
The growth of new technologies such as artificial intelligence, machine learning, Internet of Things (IoT), virtual/augmented reality and of course, the various technologies for the automotive industry has led to a new surge in the development of semiconductor chips. The growth had been stunted in part due to the considerable cost involved in using the processor core, which forms the heart of most SoCs. The enormous cost, risk, development time and necessary volumes of developing a processor, has kept this lucrative industry in the hands of just a few companies. That is, until now.
With the development of the open source RISC-V ISA from UC Berkeley labs, based on the new computing needs in various power and performance dimensions, the semiconductor industry is once again at the cusp of embracing an incredible surge in innovation. Over the last few years, the interest in RISC-V has been gaining steam with commercial implementations and adoption growing rapidly.
(more…)
Tags: IoT, RISC, RISC-V, RTL, SoCs, UVM No Comments »
|