Posts Tagged ‘TrekApp’
Wednesday, January 7th, 2015
Late last year, we published a series of blog posts discussing how the world of large chip designs is moving toward multi-processor, cache-coherent SoCs. This trend is due to several sub-trends, including the addition of one or more processors, the growth in number of processors, the use of shared memory, and the addition of caches to improve memory performance. The result of this movement is clear: large chips are becoming more difficult to verify than ever.
Verification teams face challenges at every turn. It’s hard to run a complete SoC-level model in simulation, especially if the team wants to boot an operating system and run production applications. This may be feasible in emulation or FPGA prototyping platforms, but these cost a lot of money. What we’re starting to see is the truly stunning trend that some teams are taping out SoCs without ever having run the entire design together. This means that full-chip verification and debug isn’t happening until first silicon is in the lab. Let’s explore why this is happening.
(more…)
Tags: Breker, cache, coherency, DV, functional verification, IoT, IP, portable stimuls, SoC, SoC verification, TrekApp, TrekSoC, TrekSoC-Si, uvm, VIP No Comments »
Tuesday, November 25th, 2014
Yes, we know that the title of this week’s post sounds a lot like two previous posts. We wanted to link together the two threads from those posts into a single message that we believe reflects what is happening right now in the world of complex chips. This is a short summary in line with the short week due to the Thanksgiving holiday here in the United States. The line of argument is straightforward:
- Large chips are adding embedded processors to implement complex functionality while retaining flexibility
- Single-processor chips are adding multiprocessor clusters to get better performance at a given process node
- Multiprocessor chips are using shared memory for effective data transfer and interprocess communication
- Neighbor-connected processor arrays are moving to shared memory to reduce cross-chip data latency
- Multiprocessor designs are adding caches to reduce memory access time and bypass memory bottlenecks
- Multiprocessors with caches require coherency in order to ensure that the right data is always accessed
While most of these statements are not universally true, they reflect a significant sea change that we see every day when discussing current and future projects with our customers.
(more…)
Tags: Breker, cache, Carbon, coherency, CPAK, DV, functional verification, IoT, IP, portable stimulus, SoC, SoC verification, TrekApp, TrekSoC, TrekSoC-Si, uvm, VIP No Comments »
Tuesday, November 18th, 2014
In last week’s blog post, we talked about the emergence of the commercial IP industry and shared some personal experiences. Although Breker is an EDA company and not known for IP products, we intersect with semiconductor IP (SIP) and verification IP (VIP) in important ways as we work with our customers. We’re also starting to offer our own scenario model IP (SMIP) as part of accelerating and improving verification even more. We’d like to expand on these topics in today’s post.
We have few if any customers or prospective customers who don’t use commercial VIP in their testbenches. After all, if you’re designing a standard interface you want the best verification possible that you’re meeting the standard. A VIP model that’s been used by dozens or hundreds of other projects serves as a pre-silicon “plugfest” where you get to verify your implementation of the standard against what others have done. Now that the Universal Verification Methodology (UVM) is nearly ubiquitous, most VIP is developed in a fairly consistent manner.
(more…)
Tags: Breker, cache coherency, EDA, functional verification, graph, IP, reuse, scenario model, semiconductor IP, SIP, SMIP, SoC verification, TrekApp, TrekSoC, TrekUVM, verification IP, VIP No Comments »
Thursday, November 13th, 2014
In my recent report from the Silicon Valley IP Users Conference, I passed on the prediction that the compound annual growth rate (CAGR) of semiconductor (SIP) is expected to be 12% for the next five years. Clearly there is a growing need for portions of huge SoCs to be pre-designed, pre-verified, and delivered as reusable SIP. This is a trend that started about 20 years ago with the earliest SIP vendors selling libraries and cores for standardized functions along with verification IP (VIP) to support their use.
The IP (SIP and VIP) industry has evolved a lot since then. The most obvious change is that it has been largely consumed by the major EDA companies. Synopsys and Cadence, in particular, have made many acquisitions in this space over the past few years. Some of the price tags have been quite impressive: US$380M for Tensilica, US$315M for Virage, and about the same price for Denali. In this post, I’d like to share some thoughts on the evolution of the IP business.
(more…)
Tags: Breker, cache coherency, Cadence, EDA, functional verification, IP, reuse, scenario model, semiconductor IP, SIP, SMIP, SoC verification, Synopsys, TrekApp, verification IP, VIP No Comments »
Wednesday, November 5th, 2014
Last week’s post was addressed primarily to those of you who are already designing SoCs. We made the point that more and more SoCs have multiple processors, either homogenous or heterogeneous, and that most or all of those processors do or will have caches. This led to the main conclusions of the post, that multi-processor cache coherency is necessary for most SoCs, and therefore that coherency is now a problem extending beyond CPU developers to many chip-level verification teams.
But what if you don’t have embedded processors in your design? There’s a clear sense emerging in the industry that more and more types of chips are becoming multi-processor SoCs, and most of these will require cache coherency for the CPU clusters and beyond. In this post we’ll describe the trends we see, based in part on what we learned at the recent Linley Processor Conference in Santa Clara. The world as we know it is changing rapidly, offering more challenges for verification teams but more opportunities for us to help.
(more…)
Tags: Breker, cache, Carbon, coherency, CPAK, DV, functional verification, IoT, IP, portable stimulus, SoC, SoC verification, TrekApp, TrekSoC, TrekSoC-Si, uvm, VIP No Comments »
Thursday, October 30th, 2014
In last week’s post, we discussed in detail how Breker’s TrekSoC and TrekSoC-Si products can verify the performance of your SoC by stressing every aspect of its functionality. Shortly before that, we announced a partnership with Carbon Design Systems to complement their fast, accurate processor models with TrekSoC. About two months ago, we introduced the new Coherency TrekApp and described how it can verify multi-processor cache coherency with minimal effort.
You can see a strong theme here: multi-processor SoC designs, fast simulation models, automatic generation of multi-threaded, multi-processor test cases, and test cases powerful enough to gather realistic performance metrics from pre-silicon simulation. But what if you don’t have multiple processors or caches in your SoC design? There’s a clear sense emerging in the industry that more and more chips are becoming multi-processor SoCs, and most of these will require cache coherency for the CPU clusters and beyond. Let’s explore this topic more in this post.
(more…)
Tags: Breker, cache, Carbon, coherency, CPAK, DV, functional verification, IoT, IP, portable stimulus, SoC, SoC verification, TrekApp, TrekSoC, TrekSoC-Si, uvm, VIP No Comments »
|