Open side-bar Menu
 Embedded Software
Colin Walls
Colin Walls
Colin Walls has over thirty years experience in the electronics industry, largely dedicated to embedded software. A frequent presenter at conferences and seminars and author of numerous technical articles and two books on embedded software, Colin is an embedded software technologist with Mentor … More »

Electronics for the sick

 
September 16th, 2015 by Colin Walls

I have always for medical electronics interesting. Part of the reason for my interest stems from an occasional feeling that so much of the electronics around me is ultimately pointless. Many Mentor Embedded customers are making consumer devices, cell phones and other gadgets. Do we really need all of these? Aren’t they really just toys – harmless toys, but toys nevertheless? (Except for my iPad, of course, which is a positive influence on my productivity and overall wellbeing.) Worse still, some customers are actually making weapons and they are not harmless at all!

However, we have many customers who make medical devices. I only have to look at a medical instrument and I have a warm feeling inside that maybe electronics can do some real good. The other aspect of medical instrumentation, that I find intriguing, is the extent to which its implementation clearly tracks the latest trends in embedded system development …

I can identify five key areas of very strong activity in embedded system development at this time and these are all very significant to medical devices:

Connectivity. A significant percentage – maybe more than half – of embedded devices are connected to one another or to a wider network. Medical instrumentation is very distributed and large volumes of data need to be stored and transmitted in a safe secure manner. The latest wired and wireless protocols are in significant demand, so the supply of such middleware, such as networking and USB, to our customers is critical.

User interface. The low cost and high quality of modern touch screen displays makes them attractive for many kinds of device. In the medical field, such a display can make an instrument much easier (and hence safer) to use and the patient may be reassured by a clear indication of their status. The complexity of programming 3D graphics is not inconsiderable, so we see much demand for software support.

61DA8776-EFE0-4735-B15E-F36EA5538711Low power. The design of portable devices is always challenging, as users perceive battery life a critical selection factor. Many medical devices are portable. Even for mains-powered equipment, there are environmental demands to reduce power consumption. Embedded software has an increasing impact on power consumption. Even simple things, like using a fast, small and scalable RTOS like Nucleus can have a very positive effect by reducing the amount of memory required and using every clock cycle of the CPU efficiently.

Multicore. An increasing number of embedded designs are implemented using multiple cores. There are various motivations for this decision, which include maximizing system performance while keeping power consumption down. In a medical device, it might be attractive to segment the parts of the implementation that need to be certified from those that do not and, hence, reduce costs.

Linux/Android. For appropriate applications, there is growing demand for Linux and Android. The wide range of middleware can help with connectivity and data storage.

Logged in as . Log out »




© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise