Open side-bar Menu
 EDACafe Editorial

Archive for March, 2024

Arm’s Broadest Ever Automotive Enhanced IP Portfolio Designed for the Future of Computing in Vehicles

Monday, March 25th, 2024

By Tom Conway, Senior Director, Product Management, Automotive, Arm

New Arm Automotive Enhanced (AE) processors deliver AI-accelerated compute for automotive markets.

The automotive industry is undergoing seismic change and transformation. Vehicles, now and in the future, are being defined by the electronic systems powering them, as they essentially become “a computer on wheels” that are the most complex technology devices people own.

This complexity is being driven by the proliferation of AI and an exponential growth of software that are defining software-defined vehicles (SDVs). This requires new levels of performance, efficiency, safety and security.
(more…)

Intel’s New Tech Drives Smarter, Faster Cars

Monday, March 18th, 2024

Intel has introduced a game-changing approach to how cars think and perform, marking a significant shift towards smarter, software-driven vehicles. This move is set to redefine what we expect from our cars, making them not just means of transport but smart computing hubs on wheels.

At the heart of this evolution is Intel’s latest innovation in virtualization technology, which is essentially a smarter way for the car’s computer to handle multiple tasks at once without slowing down or compromising on performance. This is big news for everyone from car manufacturers to drivers, as it addresses a key challenge in the auto industry: how to make cars that are not only efficient but also capable of delivering the advanced features and experiences consumers want.

A graphic shows GPU software virtualization capabilities that use a hypervisor compared with Intel’s plan for an SDV with hardware-enabled physical separation.

(more…)

Racing Towards Innovation: Parallel Worlds of AMD’s Semiconductor Engineering and Formula 1 Dynamics

Thursday, March 7th, 2024

In the dynamic realm of technology and engineering, the pursuit of excellence knows no bounds. Alex Starr’s keynote presentation at DVCon illuminated this journey, exploring the intertwined paths of AMD’s semiconductor advancements and Formula 1’s quest for the pinnacle of automotive performance. This exploration delves deeper into the parallels drawn by Starr, highlighting the innovative strategies, challenges, and triumphs that define both fields.

The Essence of Innovation and Execution:

Central to Alex Starr’s compelling keynote was the elucidation of AMD’s “corporate shift left” initiative, a visionary strategy that underpins the company’s approach to semiconductor design and development. This initiative, much like the strategic foresight seen in Formula 1 racing teams, prioritizes early integration of hardware emulation and verification, setting a new standard for efficiency and effectiveness in the semiconductor industry.

Alex Starr, AMD Corporate Fellow

In the high-octane world of Formula 1, every fraction of a second shaved off a lap time can be the difference between victory and defeat. Teams invest heavily in simulations and aerodynamic modeling to refine every aspect of their cars—down to the minutest detail—long before they roar to life on the track. This meticulous preparation ensures that when the race day comes, the vehicle and driver are in perfect harmony, poised for peak performance. Starr drew a compelling parallel to this practice with AMD’s approach to semiconductor design, where the “shift left” initiative represents not just a procedural adjustment but a paradigm shift in how products are conceived and brought to fruition.

By advocating for the early adoption of hardware emulation and verification, AMD effectively brings the future into the present, allowing engineers to anticipate and rectify potential design flaws well before they become costly or time-consuming to address. This forward-thinking approach mirrors the anticipatory strategies employed by Formula 1 teams, who use wind tunnel testing and computational fluid dynamics (CFD) simulations to predict and optimize the behavior of their cars under a wide range of conditions.

Moreover, Starr highlighted how this initiative has been instrumental in accelerating AMD’s silicon bring-up process, enhancing the overall design quality, and significantly reducing the time to market. By identifying and solving problems early in the design cycle, AMD minimizes the need for costly revisions and reworks, ensuring that each new product not only meets but exceeds the industry’s rigorous standards for performance and reliability.

The “corporate shift left” initiative exemplifies AMD’s commitment to innovation and execution, underscoring the company’s role as a trailblazer in the semiconductor industry. Just as Formula 1 teams relentlessly pursue perfection, seeking every possible advantage to dominate the racetrack, AMD’s strategic approach to semiconductor design and verification aims to maintain its competitive edge in the fast-paced world of technology. Through this innovative strategy, AMD not only sets a new benchmark for excellence in semiconductor engineering but also inspires a broader reflection on the importance of foresight, precision, and strategic planning in driving technological progress and achieving success in any competitive arena.

(more…)




© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise