Article source: IME
Despite the advances in neuroscience research, the human brain remains a complex puzzle with questions unanswered on how it controls human behaviour, cognitive functions and movements. Scientists from A*STAR Institute of Microelectronics (IME), Nanyang Technological University (NTU) and National University of Singapore (NUS) have jointly developed and demonstrated an integrated circuit (IC) chip with record-low power consumption for direct recording of brain activities. This breakthrough minimises the patient’s exposure to electromagnetic radiation and heat during the recording process, making it possible to integrate greater number of channels (>100 channels) to acquire more comprehensive profile of brain signals, paving the way to unlock the mystery behind the complex mind-body connection.
Neural recording system is a vital tool to acquire and process brain signals, and is also applied in artificial limb control (or neural prosthesis) treatments for paralyzed patients. The system comprises multiple electrodes for data acquisition and is implanted within the skull during the operation. The implantability of the system places tight limits on its size and power consumption, while at the same time demanding sufficient performance to record good quality data.