Open side-bar Menu
 Aldec Design and Verification

Archive for November, 2017

Plots: A New Way To Analyze Data

Wednesday, November 29th, 2017

Data analysis is often a very time consuming process for a hardware design or verification engineer. We always end up using the waveform viewer which may not be very efficient in giving us a high-level overview of what we’re looking for. Data that is spread across a long simulation cycle is very hard to visualize on the waveform. Whenever I have to analyze a huge chunk of data, I always wonder what would be the best way to do it. It is often cumbersome to go through even a millisecond’s worth of waveform data to analyze the bigger picture. There are of course other tools that can take a VCD file and perform an analysis but that involves buying and learning to use an additional tool.

Sometimes it’s not feasible to invest time and money into new tools. So we always go back to our trusty waveform viewer to make sense of the results. But what if there is a better way of analyzing such data, especially if you are doing some kind of signal processing application and have a lot of data that you would rather view in a format other than the time domain based representation of a waveform? For example, imagine you are trying to visualize the data of an FFT engine. On a waveform, it is next to impossible to visualize this.

In Riviera-PRO we have the Plots feature which can help you. The plot window ties directly to the simulation database, so you don’t have to code anything new or learn a new tool. Just with a few clicks you can add objects to the plot viewer and, based on the settings, it will generate a plot of that object. Sounds very simple but it gives you a bigger picture of what your design object is doing over the course of the entire simulation, rather than just the slice you can see on the waveform between two points of time.

For the rest of this article, visit the Aldec Design and Verification Blog.

Emulation in FPGA

Wednesday, November 22nd, 2017

For many years, emulators were available only to verification teams working on the largest projects in companies with deep enough pockets. Due to size rather than capabilities they were called “Big Box” emulators and typically were used in order to recover some of the time lost on RTL simulation. Meanwhile, FPGA technology has been available long enough to mature to the point where FPGA based emulation became available – and I’m not talking here about FPGA prototyping.

“Emulation – Prototyping, aren’t they just synonyms?”

Sure, they are not. The most significant differences between FPGA usage in prototypes and in emulation are shown in table 1.

 

Prototyping

Emulation

Clock frequency

10-200 MHz

1-20 MHz

Clock Topology

Multiple asynchronous sources – limited number of domains

Derived from emulation core clock – unlimited number of domains

Speed Limitation

Fixed,
Determined by Inter-FPGA signal multiplexing

Adaptive,
Determined by FPGA-to-Host Comms, Inter-FPGA signal multiplexing

Stimulus Source

In-System, Real-world IO

Host,
Connection with simulators, virtual platforms, virtual models and other testbenches

Signal Capture

Selected Nodes

Full Visibility

Memory Models

Near-match to physical

Modelled

Design Setup

Computer aided but with extensive user’s input and decisions

Fully automated

Table 1: Typical differences between FPGA usage in prototyping and emulation

FPGAs are the fastest platform for prototyping, but we can also harness that speed into our verification environment, then we can achieve runtime performance 2x to 5x faster than traditional “big box” emulation systems, and all at a fraction of the cost per gate per MHz.

“FPGAs are way too small for our SoC design, aren’t they?”

In the HES-US-2640 board, Aldec already has the largest capacity single FPGA boards commercially available today. Connecting 4 such boards in a backplane gives you 24 largest Xilinx UltraScale chips in which you can implement 633 Million ASIC Gates and still have 40% of capacity margin to facilitate FPGA Place & Route.

Figure 1: Scalable HES platform for prototyping & emulation

Not all designs need such excessive capacity, especially IoT projects, where the primary requirement is small footprint and energy-safe design. You will find the proper configuration in Aldec HES boards versatile portfolio containing Virtex-7, Virtex UltraScale and Kintex UltraScale based hardware.

 

For the rest of this article, visit the Aldec Design and Verification Blog.

TrueCircuits: IoTPLL
DAC2018



Internet Business Systems © 2018 Internet Business Systems, Inc.
25 North 14th Steet, Suite 710, San Jose, CA 95112
+1 (408) 882-6554 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise