MoSys Launches 65nm Macro Program; Signs First 65nm Technology Licensing Agreement with Major IDM and Initiates CLASSIC Macro Designs with Pure-Play Foundries

SUNNYVALE, Calif.—(BUSINESS WIRE)—Aug. 2, 2006— MoSys, Inc. (Nasdaq: MOSY), the industry's leading provider of high-density System-on-Chip (SoC) embedded memory solutions announced today that it has completed the basic research and development work for porting MoSys' 1T-SRAM(R) embedded memory technology to the advanced 65nm semiconductor technology node and has initiated macro design work in order to move these designs into high volume consumer SoC's.

Among these initiatives, the company has signed the first 65nm technology license and royalty agreement with a major integrated device manufacturer (IDM). This agreement, which was expected to sign in the second quarter, has now been completed.

Additionally, design work has begun to create 65nm implementations of the pre-configured CLASSIC Macro product line with leading Pure-Play Foundries.

"The density and power advantages of our 1T-SRAM technology continue to improve as we scale to smaller geometries like 65nm," mentioned Chet Silvestri, Chief Executive Officer of MoSys, "and we are pleased to be working with industry-leading semiconductor manufacturers in order to make our 65nm implementations available to SoC designers."

About MoSys Inc.

Founded in 1991, MoSys (Nasdaq: MOSY), develops, licenses and markets innovative memory technologies for semiconductors. MoSys' patented 1T-SRAM technologies offer a combination of high density, low power consumption, high speed and low cost unmatched by other available memory technologies. The single transistor bit cell used in 1T-SRAM memory results in the technology achieving much higher density than traditional four or six transistor SRAMs while using the same standard logic manufacturing processes. 1T-SRAM technologies also offer the familiar, refresh-free interface and high performance for random address access cycles associated with traditional SRAMs. In addition, these technologies can reduce operating power consumption by a factor of four compared with traditional SRAM technology, contributing to making them ideal for embedding large memories in System-on-Chip (SoC) designs. MoSys' licensees have shipped more than 100 million chips incorporating 1T-SRAM embedded memory technologies, demonstrating excellent manufacturability in a wide range of silicon processes and applications. MoSys is headquartered at 755 N. Mathilda Avenue, Sunnyvale, California 94085. More information is available on MoSys' website at http://www.mosys.com.



Contact:
MoSys, Inc., Sunnyvale
Walter Croce, 408-731-1820

Email Contact

Rating:


Review Article Be the first to review this article

ALDEC:

Featured Video
Editorial
Peggy AycinenaWhat Would Joe Do?
by Peggy Aycinena
Reverie: All That Glitters is not Past
More Editorial  
Jobs
FAE FIELD APPLICATIONS SAN DIEGO for EDA Careers at San Diego, CA
Digital and FPGA Hardware Designer for Giga-tronics Incorporated at San Ramon, CA
Development Engineer-WEB SKILLS +++ for EDA Careers at North Valley, CA
Senior Physical Design Engineer for Ambiq Micro at Austin, TX
Technical Marketing Manager Valley for EDA Careers at San Jose, CA
SoC Design Engineer for Intel at Santa Clara, CA
Upcoming Events
European 3D Summit 2017 at 3, parvis Louis Néel 38054 Grenoble France - Jan 23 - 25, 2017
3D Printing Electronics Conference at High Tech Campus 1, 5656 Eindhoven Eindhoven Netherlands - Jan 24, 2017
DesignCon 2017 at Santa Clara Convention Center Santa Clara CA - Jan 31 - 2, 2017
Embedded Neural Network Summit at San Jose CA - Feb 1, 2017



Internet Business Systems © 2017 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy