Flomerics Releases FLO/PCB Version 4.1

(6 September 2007) -- Flomerics has released Version 4.1 of its FLO/PCB thermal design software with new features including the ability to model potting compounds, probe temperature values interactively, provide user-defined temperature ranges and search component libraries. FLO/PCB makes it possible to perform board-level thermal simulation very early in the design process. This analysis can help highlight potential thermal issues and provide engineers with more flexibility in resolving them before hundreds of hours of engineering time is invested in unusable designs.

Version 4.1 of FLO/PCB includes a new SmartPart object used to represent epoxy type solid cured potting compounds. It can be placed over all or part of either side of the PCB. Multiple (non-overlapping) potting compound regions can be defined. Any material in the resins material library supplied with the software can also be used or the user can define the properties using the potting compound material property sheet.

The new version also provides the ability to move the cursor over a temperature plot in the results visualization mode and report the point temperature. The legend scaling options have also been improved so that the user can define minimum and maximum values for the upper and lower bounds of the scale. The minimum and maximum values can also be derived from the coldest and hottest objects in the simulation results.

Version 4.1 also includes an advanced search capability for the component library. Users typically save components that they create into a library, from which they can be recalled and quickly placed into a new board design.
FLO/PCB Version 4.1 has also been updated to maintain bi-directional connectivity with Version 7.1 of Flotherm, Flomerics’ system-level thermal modeling tool. For example, the same PCB design that is used to create a FLO/PCB model can also be incorporated into a system-level model in Flotherm. This saves time for the mechanical engineer in updating the system level model, if necessary, while reducing the chance of errors caused by miscommunication. The results from the systems level analysis can also be exported directly to the board-level simulation, making it possible for the board designer to apply the air flow and temperatures from the system-level simulation to the board being designed. This approach keeps all team members in sync and enables them to contribute to concept development in real time.

For more information, visit Flomerics' Web sites www.flopcb.com and www.flomerics.com

###



Review Article Be the first to review this article
Aldec

Featured Video
Editorial
Peggy AycinenaWhat Would Joe Do?
by Peggy Aycinena
Diversity: Really, who cares
More Editorial  
Jobs
Senior R&D Engineer...Timing Closure Specialist for EDA Careers at San Jose or Anywhere, CA
Senior Front-End RTL Design AE for EDA Careers at San Jose, CA
Senior Methodology Automation Engineer for EDA Careers at San Jose, CA
DDR 3-4-5 Developer with VIP for EDA Careers at San Jose, CA
Proposal Support Coordinator for Keystone Aerial Surveys at Philadelphia, PA
Upcoming Events
11th International Conference on Verification and Evaluation of Computer and Communication Systems at 1455 DeMaisonneuve W. EV05.139 Montreal Quebec Canada - Aug 24 - 25, 2017
The Rise of Mechatronics at Dassault Systèmes San Diego 5005 Wateridge Vista Drive San Diego CA - Sep 12, 2017
The Rise of Mechatronics at Buca di Beppo - Pasadena 80 West Green Street Pasadena CA - Sep 13, 2017
S2C: FPGA Base prototyping- Download white paper



Internet Business Systems © 2017 Internet Business Systems, Inc.
25 North 14th Steet, Suite 710, San Jose, CA 95112
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy