Research and Markets: Embedded Wafer-Level-Packages: Fan-out WLP / Chip Embedding in Substrate - The Next Generation of IC Packaging & Substrate Assembly Waves

DUBLIN — (BUSINESS WIRE) — July 8, 2010Research and Markets ( has announced the addition of the " Embedded Wafer-Level-Packages: Fan-out WLP / Chip Embedding in Substrate - 2010 Report" report to their offering.

Be ready for the next generation of IC packaging & substrate assembly waves!


Historically, embedded IC package technology is not new at all: several players such as Freescale with its RCP, Infineon with its eWLB and Ibiden for die embedding into PCB laminated substrates have developed dedicated technologies and process IP in this area for years. Benefits of embedded package integration include miniaturization, improvement of electrical and thermal performance, cost reduction and simplification of logistic for OEMs.

Things are moving really fast at the moment as this year, we see both Fan-out wafer level packaging and chip embedding into PCB laminate infrastructures emerging at the same time, ramping to high volume production. Fan-Out WLP technology is emerging on both 200mm / 300mm infrastructures

Infineon is having a great success with its proprietary eWLB technology: the first FO-WLP wafers are mass produced on 200mm both at Infineon, STATS ChipPAC and ASE since 2009. Indeed, Fan-Out WLP is extending the general concept of Wafer Scale Packaging to new application categories, especially the ones with higher pin-counts and larger chip size such as wireless communication ICs. First embedded package products based on eWLB have been identified within LGE and Nokia handsets. This year, a few additional players are even more aggressive in putting further capacity for eWLB manufacturing as both STATs chippaC and NANIUM are at the moment ramping-up their facilities for manufacturing the first generation eWLB on 300mm reconfigured wafers. Other packaging houses such as SPIL, Amkor, UTAC, ACET and others are also on the point to announce the start of their own Fan-out wafer level packaging operations. Embedded die package technology to expand fast from niche to high volume markets

At the same time, embedded die package technology has made a lot of progress on its side. Based on PCB laminate infrastructure, chip embedding technology is actually on the way to catch a relatively important portion of the actual WLCSP packaging business as it does leverage the existing WLP/RDL infrastructure already established worldwide: indeed, most of WLCSP die applications are embedded ready, so to realize the full benefits of this WLCSP to Embedded die conversion, only a few extra manufacturing steps are missing like the realization of thin copper plating process, extreme wafer thinning down to 50m, thin dies handling and dicing. Electrical performance, testing and manufacturing yields are still major issues and showstoppers for chip embedding technology to move forward. Therefore, initial volume markets for embedded packages will be rather small, low pin-counts analog type of applications such as integrated passive devices (IPD), RFID and power MOSFET components that are at the moment under qualification for mass production before the end of this year already. Generally speaking, we believe that the winning situation for embedded die packages can be met for company partnerships able to cross-over the traditional packaging, assembly and test supply chain. A good example would be to put together a leading analog IC player (such as TI, Maxim IC, NXP or ST) with a WLP/RDL partner (such as FCI, Casio Micronics, NEPES, etc) together with a PCB integrator player (such as Imbera / Daeduck, Ibiden, AT&S, Taiyo Yuden or SEMCO). This type of emerging partnerships are absolutely necessary in order to standardize the embedded package technology and to leverage an entire new packaging infrastructure based on low-cost, panel size PCB manufacturing techniques.

FOWLP versus Chip Embedding: competing technologies and infrastructures?

Today, embedded die and Fan-Out WLP technologies are not competing at all. Indeed, these two emerging semiconductor packaging techniques are targeting very different applications initially: the chip embeddeding technology is looking for replacement of low cost, low pin-counts WLCSP / SOT / QFN / LGA family package applications while FOWLP technology is rather targeting the direct replacement of higher I/Os (> 120 pins) BGA package applications. However, in the long term, with standardization and through further technology improvements towards higher yield, better electrical performance, lower profile, better testability and smaller pitch features, Fan-out WLP and Embedded die technology could seriously compete in the fast growing 3D Packaging market space as they will both enable the construction of ever more complex, larger SiP modules with different active and passive functions, all connected on both sides of the active substrate So Fan-out WLP and chip embeddeding into PCB laminates are just two additional key pieces of the widening tool-box for 3D Packaging!


  • Both Fan-Out WLP and Chip embedded package technologies analyzed.
  • Key market drivers, benefits and challenges application by application
  • Market trends and figures with details breakdown by application
  • Description of the complete manufacturing BOM for embedded packaging:
  • - key equipments: for 200 mm / 300mm / Panel manufacturing
  • - Specific material's selection coming from both FE / BE / PCB area
  • Analysis of several embedded package target prices for a few key application
  • Supply chain perspectives, key players and emerging infrastructure for embedded packaging
  • - Analysis of the different possibility for the implementation if FO-WLP and chip embedding with the rationale behind (chip first / chip last, single die / multi-die / SiP module, etc...)

1 | 2 | 3  Next Page »

Review Article Be the first to review this article
CST Webinar Series


Featured Video
Peggy AycinenaWhat Would Joe Do?
by Peggy Aycinena
Acquiring Mentor: Four Good Ideas, One Great
More Editorial  
SENIOR ASIC Design Engineer for TiBit Communications at Petaluma, CA
Sr. staff ASIC Design Engineer -2433 for Microchip at San Jose, CA
Manager, Field Applications Engineering for Real Intent at Sunnyvale, CA
Upcoming Events
DeviceWerx - 2016 at Green Valley Ranch Casino & Resort Las Vegas NV - Nov 3 - 4, 2016
2016 International Conference On Computer Aided Design at Doubletree Hotel Austin TX - Nov 7 - 10, 2016
ICCAD 2016, Nov 7-10, 2016 at Doubletree Hotel in Austin, TX at Doubletree Hotel Austin TX - Nov 7 - 10, 2016
Electric&Hybrid Aerospace Technology Symposium 2016 at Conference Centre East. Koelnmesse (East Entrance) Messeplatz 1 Cologne Germany - Nov 9 - 10, 2016
S2C: FPGA Base prototyping- Download white paper

Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy