UMC and Integrand Partner to Bring Advanced Capabilities to 0.13 Micron RFCMOS Designers; New GUI and Enhanced Virtual Inductor Library Target Smaller Process Geometry, Offer Greater Speed and Accuracy During Model Development

HSINCHU, Taiwan & BERKELEY HEIGHTS, N.J.—(BUSINESS WIRE)—Aug. 31, 2005— UMC (NYSE: UMC) (TSE:2303), a world-leading semiconductor foundry, and Integrand Software, Inc., an EDA software company, today announced that their collaboration has resulted in the development of leading edge, IC design resources for 0.13 micron RF designers. Through the partnership, UMC's Virtual Inductor Library (VIL) is more robust and has new capabilities from Integrand tools. A new graphical user interface (GUI) tied to UMC's Foundry Design Kit (FDK) gives designers the means to create accurate designs in a shorter amount of time.

Integrand's EMX(R) and EMX-Continuum(TM) tools, utilized in UMC's VIL, have been used for the synthesis of Spice models for a variety of spiral inductors, including Planar, Stacked and Symmetric inductors. Accuracy has been verified to be within a few percent of measurements for inductance, as well as for more sensitive parameters like the quality factor (Q).

"We have been very happy to partner with and license our technology to UMC to provide greater capabilities to RFCMOS designers," said Dr. Sharad Kapur, president of Integrand Software, Inc. "Traditionally, scalable models have been provided by foundries only for active components. The EMX-Continuum software was used to create true parameterized, or scalable, models for UMC's spiral inductors. In addition, Integrand's Optimum Inductor Finder(TM) combined with UMC's FDK and VIL represent a unique solution to the inductor synthesis problem, previously thought intractable because of the large design space of passives."

Integrand's Optimum Inductor Finder, a GUI-based synthesis tool, is now deployed within the FDK to allow UMC customers to enter their desired inductance and make tradeoff decisions between Q and area. Designers may also request a specified "flatness" of inductance within a given frequency range for Ultra-Wideband (UWB) circuit designs. The seamless integration within the FDK allows for back annotation in order to drive UMC's Schematic Driven Layout. Furthermore, the Spice model parameters are geometric to allow EDA Layout Parasitic Extraction (LPE) tools to extract model parameters from a GDS database for post-layout simulation.

"Experiments within our lab have demonstrated the accuracy of these tools across different design spaces and over several wafers," said S. C. Chien, vice president of UMC's Central Research and Development division. "Planar, Stacked and Symmetric inductors were used in the study and accuracy was confirmed in both the pre- and post- de-embedding of probe structures. These positive results indicate the readiness of these tools at UMC for RF designers."

Dr. Long-Ching Yeh, senior director of tool support and DFM at UMC, added, "UMC continues to be a foundry leader in terms of providing key design solutions to RF designers. This cooperative effort with Integrand has resulted in a solution that delivers accurate modeling results for 0.13um RF designs within a fraction of the time compared to other methods. In addition, with the newly available Optimum Inductor Finder GUI, it takes just a few seconds for designers to create an optimal inductor, a capability that significantly increases the likelihood of first-silicon success without extending design cycle time for 0.13um RFCMOS designs."

Project Highlights:

EMX-Continuum: UMC used the EMX-Continuum software to create scalable inductor models that have several important features:

-- The scalable models are standard RLCK Spice; this guarantees correct noise modeling when doing Spice-level simulation.

-- The models are available in Spectre(R), ELDO(R), ADS and HSPICE(R) format.

-- The models are directly interfaced to the Optimum Inductor Finder GUI deployed with the FDK.

-- The Optimum Inductor Finder back-annotates the results to allow schematic driven layout.

EMX: EMX is based on the Fast Multipole method combined with a patent-pending approach to recognize geometric regularity in IC layouts for efficient electromagnetic (EM) simulation. EMX exhibits several important features:

-- UMC has found that the simulation of its inductors takes only a couple of minutes for a full broadband sweep.

-- EMX was useful for designing patterned ground shields, resulting in an increase in Q of about 35% for some inductors (verified by measurement).

-- EMX has been used for the design of optimal de-embedding designs for Open and Short structures.

-- EMX works directly off the final mask layout and handles features of UMC's layouts such as slotting rules and via arrays with no manual editing.

About Integrand Software, Inc.

Integrand Software, Inc. provides electronic design automation (EDA) software for high frequency, RF and Mixed Signal integrated circuits (ICs). Integrand's customers include foundries, semiconductor design houses, and individual designers. Integrand is creating unique tools for the analysis and synthesis of IC and package designs. Integrand's patent-pending technologies allow designers to accurately and efficiently simulate the behavior of passive components and interconnect. These capabilities shorten design cycles and let companies design substantially better products with less risk. For more information about Integrand, visit

About UMC

UMC (NYSE: UMC) (TSE:2303) is a leading global semiconductor foundry that manufactures advanced process ICs for applications spanning every major sector of the semiconductor industry. UMC delivers cutting-edge foundry technologies that enable sophisticated system-on-chip (SoC) designs, including 90nm copper, 0.13um copper, and mixed signal/RFCMOS. UMC is also a leader in 300mm manufacturing; Fab 12A in Taiwan and Singapore-based Fab 12i are both in volume production for a variety of customer products. UMC employs approximately 10,500 people worldwide and has offices in Taiwan, Japan, Singapore, Europe, and the United States. UMC can be found on the web at

EMX is a registered trademark and EMX-Continuum and Optimum Inductor Finder are trademarks of Integrand. All other trademarks and registered trademarks are the property of their respective owners.

Alex Hinnawi, (886) 2-2700-6999 ext. 6958 (Taiwan)
KJ Communications (for UMC)
Eileen Elam, 650-917-1488

Email Contact
Dr. Albert Lin, 908-322-9488

Email Contact
Dr. Sharad Kapur, 908-517-0748

Email Contact


Review Article Be the first to review this article
CST: Webinar

Aldec Simulator Evaluate Now

Featured Video
Senior PIC Test Development Engineer for Infinera Corp at Sunnyvale, CA
ASIC Design Engineer for Infinera Corp at Sunnyvale, CA
Senior Formal FAE Location OPEN for EDA Careers at San Jose or Anywhere, CA
Design Verification Engineer for Cirrus Logic, Inc. at Austin, TX
RF IC Design Engineering Manager for Intel at Santa Clara, CA
Upcoming Events
Essentials of Electronic Technology: A Crash Course at Columbia MD - Jan 16 - 18, 2018
Essentials of Digital Technology at MD - Feb 13 - 14, 2018
IPC APEX EXPO 2018 at San Diego Convention Center San Diego CA - Feb 24 - 1, 2018
CST: Webinar series

Internet Business Systems © 2017 Internet Business Systems, Inc.
25 North 14th Steet, Suite 710, San Jose, CA 95112
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise