New Antennas Developed at SD Mines are First to Use Phase-Changing Material to Alter Shapes, Frequencies

RAPID CITY, S.D. (May 7, 2015) – Two new antenna prototypes are the first to be developed using a special class of thin film material which allows them to alter their shape using temperature and radiate at varying frequencies within the popular GHz range. A single reconfigurable antenna could replace two or more traditional antennas, including those in cell phones, Wi-Fi and numerous military devices.

The revolutionary new antennas developed at the South Dakota School of Mines & Technology, in collaboration with Michigan State University, were documented in the IEEE Antennas and Wireless Propagation Letters in February. They are made by integrating vanadium dioxide thin films, a type of “phase-change” material, meaning it is an insulator at room temperature and becomes metal when heated above 68 degrees Celsius. The heating-cooling cycle is repeatable and the phase-change is reversible.

Principal investigator and renowned expert Dimitris Anagnostou, Ph.D., of the South Dakota School of Mines & Technology, led the research with his graduate student Tarron Teeslink, collaborating with Nelson Sepulveda, Ph.D., and his student David Torres, from Michigan State University.

Anagnostou, associate professor in the Department of Electrical & Computer Engineering, has been working on reconfigurable and tunable antennas for the past 15 years. Common methods to date have resulted in non-linearities, high losses, expensive fabrication equipment and often complicated biasing mechanisms.

His exploration of vanadium dioxide has shown the material can be used in linear devices, has minimal losses and can be activated using a variety of heat transfer methods.

Linear devices for radio-frequency communications applications involve usually passive components such as antennas and (microwave) filters, as well as resistors, capacitors and inductors.

Often antennas are tuned or reconfigured using non-linear components such as diodes, but these distort the electrical signals, especially over a wide range of frequencies. Vanadium dioxide is a linear material, meaning it affects all radio frequencies by the same amount causing no distortion, and is therefore suitable for narrowband and wideband tuning.

Vanadium dioxide was investigated as far back as 1959, when an article described the insulator-to-metal transition at approximately 68 degrees Celsius. Since then, it has been almost neglected, as the need for reconfigurable components, wireless communications and antennas was not as significant, Anagnostou said.

In the past decade vanadium dioxide has received widespread attention from researchers due to its properties for applications spanning from information storage to stronger artificial muscles and missile guidance.

This is the only known success achieving reconfigurability by altering the antenna’s geometry with the special class of material. Several other universities are currently working in the area, indicating the strong scientific interest in this area.

“The novelty lies in obtaining the know-how of the integration and application of the material in antennas in the GHz range. There are still many things to learn. These prototype antennas prove the material is capable for use and should be further investigated,” Anagnostou said, adding the material can find application in general antenna and microwave component design but ultimately has the potential for many military uses. “Our ongoing experiments in using the material for cloaking and thermal camouflage are also very encouraging,” he said.

The National Science Foundation funded the work over three years as a collaborative proposal between South Dakota Mines and Michigan State University. While Anagnostou and Teeslink did the design and characterization at SD Mines, Michigan State researchers fabricated the antennas at the clean room of the Air Force Office of Scientific Research.

About SD Mines

Founded in 1885, the South Dakota School of Mines & Technology is a science and engineering research university located in Rapid City, S.D., offering bachelors, master’s and doctoral degrees. The university enrolls 2,798 students from 45 states and 39 foreign countries, with a student-to-faculty ratio of 14:1. The SD School of Mines placement rate is 98 percent, with an average early career salary for graduates of $65,600, according to the 2014-2015 PayScale report. Find us online at  www.sdsmt.edu, on Facebook at  https://www.facebook.com/sdsmt and on Twitter at  https://twitter.com/sdsmt.


Contact:

Fran LeFort
Communications Manager
(605) 394-6082
Email Contact




Review Article Be the first to review this article
CST Webinar Series

EMA:

Featured Video
Editorial
Peggy AycinenaWhat Would Joe Do?
by Peggy Aycinena
Retail Therapy: Jump starting Black Friday
Peggy AycinenaIP Showcase
by Peggy Aycinena
REUSE 2016: Addressing the Four Freedoms
More Editorial  
Jobs
AE-APPS SUPPORT/TMM for EDA Careers at San Jose-SOCAL-AZ, CA
ACCOUNT MANAGER MUNICH GERMANY EU for EDA Careers at MUNICH, Germany
FAE FIELD APPLICATIONS SAN DIEGO for EDA Careers at San Diego, CA
Development Engineer-WEB SKILLS +++ for EDA Careers at North Valley, CA
Manager, Field Applications Engineering for Real Intent at Sunnyvale, CA
Upcoming Events
Zuken Innovation World 2017, April 24 - 26, 2017, Hilton Head Marriott Resort & Spa in Hilton Head Island, SC at Hilton Head Marriott Resort & Spa Hilton Head Island NC - Apr 24 - 26, 2017
CST Webinar Series



Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy