Coventor Expands MEMS Modeling Offering With Latest Release of MEMS+(R) Tool Suite

CARY, NC -- (Marketwired) -- Sep 08, 2014 -- Coventor®, Inc., the leading supplier of design automation software for micro-electromechanical systems (MEMS), today announced immediate availability of the latest version of its MEMS+® design solution for accelerating development of advanced MEMS devices and systems. MEMS+ 5.0 features an expanded modeling library to enable simulation of a greater variety of devices, with a particular focus on the unique challenges of micro-mirrors and piezo-electric devices. It also adds a new capability to create and export reduced-order models (ROMs) to the MATLAB® Simulink® environment from The MathWorks, Inc. to enable extremely fast and accurate non-linear simulations of MEMS-based systems. This supplements the existing capability to export ROMs in Verilog-A format for simulations of MEMS with electronics in widely used EDA simulators such as the Cadence® Spectre® circuit simulator.

The MEMS+ suite enables MEMS and IC designers to rapidly explore and optimize designs in parallel in the MathWorks MATLAB/Simulink and Cadence Virtuoso® environments. It is a key part of Coventor's platform, which also includes the CoventorWare® and SEMulator3D® suites. The platform provides a complete solution for designing and verifying state-of-the-art accelerometers, gyroscopes, microphones, microprojectors and many other types of MEMS sensors and actuators.

"MEMS EDA tools from Coventor provide valuable insight in new MEMS processes and designs," said Dr. Ibrahim (Abe) M. Elfadel, Professor of Microsystems Engineering at Masdar Institute of Science and Technology. "The unique MEMS+ modeling approach makes it possible, for the first time, to perform fully coupled simulations that include many of the multi-physics effects (e.g., electrical, mechanical, thermal, fluidics, etc.) inherent in our innovative MEMS designs."

New in MEMS+ 5.0
This latest release of the MEMS+ suite features an improved model library for accurately simulating an even wider range of device types and structures, including:

  • New electrostatic comb drive models between movable and flexible structures
  • Improved side electrode and side contact models
  • Squeezed-film damping models for side electrodes
  • Support for modeling out-of-plane flexible structures such as corrugations
  • Enhanced support for modeling piezo-electric sensors and actuators
  • Generic spring and damper models

The new library models were developed in response to customer requests and particularly support engineers tasked with creating new micro-projectors for smartphones or gyros and energy harvesters for automotive and industrial applications.

A major highlight of MEMS+ 5.0 are the new capabilities to create and export non-linear ROMs. A new ROM generation interface gives users additional control over the mechanical and electrical nonlinearities to be included in the ROM. The new features allow users to trade off accuracy for simulation speed based on the type of simulation they want to run. MEMS designers can now automatically generate and export ROMs in a format called MROM, which is compatible with the Simulink simulator. This new capability extends the range of simulation options to include MATLAB Simulink in addition to Verilog-A compatible simulators such as Cadence Spectre supported by the previous release of the MEMS+ suite. Exported ROMs simulate 100X faster than fully non-linear MEMS+ models, which have been valuable to MEMS designers but too slow for ASIC designers. During model generation, designers can select one or more non-linear input variables; all other input variables are linearized about selected non-linear operating points.

The new reduced order modeling and simulation capabilities are particularly suited for large scaled multi-mass gyros with hundreds of comb fingers or resonators made of many flexible elements. In general, reduced order modeling applies to:

  • Accelerometers
  • Gyros
  • Microphones
  • Pressure sensors
  • Resonators
  • Energy harvesters
  • Scanning mirrors

The simulation results from the new MROMs can be viewed in the MEMS+ result visualizer Scene3D tool. By turning MROM or any other simulation data into 3D animations, Scene3D gives the MEMS designer detailed understanding of the MEMS behavior and forms an important bridge in the communication between the ASIC and MEMS designer.

The MEMS+ Matlab scripting interface has also evolved. A new MATLAB scripting syntax gives the user many new features and is expected to drastically lower the learning curve for new and part time users. MEMS+ MATLAB scripts from previous versions will be updated automatically.

"MEMS design requirements continue to expand and designers are looking for more comprehensive modeling support and greater efficiencies. MEMS+ 5.0 addresses some of the most demanding challenges our customers are facing, particularly as they look to opportunities in areas like mobile devices, the Internet of Things and embedded control systems," said Coventor's Director of System Level Simulation Gunar Lorenz. "The enhancements made in this latest release will greatly improve designer productivity and help further grow the overall market for MEMS."

Availability
The MEMS+ 5.0 software is shipping now. For more detailed product information and to download the new software release, users can visit: http://www.coventor.com/support/portal/.

About Coventor
Coventor, Inc. is the market leader in automated design solutions for micro-electromechanical systems (MEMS) and virtual fabrication of MEMS and semiconductor devices. Coventor serves a worldwide customer base of integrated device manufacturers, fabless design houses, independent foundries, and R&D organizations that develop MEMS-based products for automotive, aerospace, industrial, defense, and consumer electronics applications, including smart phones, tablets, and gaming systems. Coventor's software tools and expertise enable its customers to simulate and optimize MEMS device designs and fabrication processes before committing to time-consuming and costly silicon learning cycles. The company is headquartered in Cary, North Carolina and has offices in California's Silicon Valley, Waltham, Massachusetts, and Paris, France. More information is available at http://www.coventor.com.

Coventor, CoventorWare. SEMulator3D and MEMS+ are registered trademarks of Coventor, Inc. All other trademarks are the property of their respective owners.

For more information, contact:
Mike Sottak
(408) 876-4418

Email Contact 





Review Article Be the first to review this article

True Circuits:

Featured Video
Editorial
Peggy AycinenaWhat Would Joe Do?
by Peggy Aycinena
Retail Therapy: Jump starting Black Friday
Peggy AycinenaIP Showcase
by Peggy Aycinena
REUSE 2016: Addressing the Four Freedoms
More Editorial  
Jobs
FAE FIELD APPLICATIONS SAN DIEGO for EDA Careers at San Diego, CA
ACCOUNT MANAGER MUNICH GERMANY EU for EDA Careers at MUNICH, Germany
Development Engineer-WEB SKILLS +++ for EDA Careers at North Valley, CA
AE-APPS SUPPORT/TMM for EDA Careers at San Jose-SOCAL-AZ, CA
Manager, Field Applications Engineering for Real Intent at Sunnyvale, CA
Upcoming Events
Zuken Innovation World 2017, April 24 - 26, 2017, Hilton Head Marriott Resort & Spa in Hilton Head Island, SC at Hilton Head Marriott Resort & Spa Hilton Head Island NC - Apr 24 - 26, 2017
DownStream: Solutions for Post Processing PCB Designs
Verific: SystemVerilog & VHDL Parsers
TrueCircuits: UltraPLL



Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy