The DTPCI32DC - Dual Clock 32bit PCI Bus Target Interface from Digital Core Design

Digital Core Design, one of the most experienced (since 1999) IP Core providers and a  System-on-Chip design house, introduced to its portfolio the DTPCI32DC. It’s a Dual Clock 32-bit PCI Bus Target Interface IP Core which meets all requirements of the PCI 3.0 specification for a target device. Moreover, it compromises a minimal gate count with a high-bandwidth data transfer.

Bytom, July the 14th, 2016 - The DTPCI32DC is a 32-bit target interface which meets all requirements of the PCI 3.0 specification for a target device. It compromises a minimal gate count with a high-bandwidth data transfer. The Core’s main feature is the presence of two clock domains. - They enable  flexibility and higher performance as well – says Tomek Krzyzak, VCEO of DCD – When  time required for implementation becomes crucial, the DTPCI32DC brings a domain crossing .

Saved time can be used for a specific system implementation instead. The user-friendly back-end interface can be very easily and effectively tailored to the design needs.

The Core supports up to six Base Address Registers and Expansion ROM address register with both I/O and Memory space decoding from 16 bytes up to 4 GB. Another important feature is a cache wrapping hardware support and a cacheline pre-fetching capability. The DTPCI32DC is accepting size cache lines which are powered from 2 up to 128. It enables also target-disconnect with data, without data or by a target abort. Moreover, the DTPCI32DC is capable to work with 66 MHz clock frequency in the most popular technologies. It assures the PCI timing requirements, as well as other parameters like FIFOs depths number or Base Address Registers (they can be easily configured at the pre-synthesis stage). 

More information & evaluation requests: http://dcd.pl/ipcore/1112/dtpci32dc/ 

Key Features:

  • — Fully supports PCI specification 3.0 protocol
  • — Stable clock domain crossing regardless of the clock frequencies
  • — Cache wrapping (cache lines must be powers of 2)
  • — User controlled burst data transfer
  • — Possible no-wait state transactions
  • — Automatic handling of configuration space read/write access
  • — Parity generation and parity error detection
  • — Single interrupt support
  • — Configurable FIFOs depth
  • — Supported backend initiated burst termination (with and without data)
  • — No tri-state buffers




Contact:

Dr Thomas Cwienk
tomeq@dcd.pl
Skype: tomasz.cwienk
Tel +48 32 282 82 66
www.dcd.pl




Review Article Be the first to review this article
 True Circuits: Ultra PLL

Aldec

Featured Video
Editorial
Peggy AycinenaWhat Would Joe Do?
by Peggy Aycinena
Diversity: Really, who cares
More Editorial  
Jobs
Senior Methodology Automation Engineer for EDA Careers at San Jose, CA
DDR 3-4-5 Developer with VIP for EDA Careers at San Jose, CA
Senior Front-End RTL Design AE for EDA Careers at San Jose, CA
Senior R&D Engineer...Timing Closure Specialist for EDA Careers at San Jose or Anywhere, CA
Proposal Support Coordinator for Keystone Aerial Surveys at Philadelphia, PA
Upcoming Events
11th International Conference on Verification and Evaluation of Computer and Communication Systems at 1455 DeMaisonneuve W. EV05.139 Montreal Quebec Canada - Aug 24 - 25, 2017
The Rise of Mechatronics at Dassault Systèmes San Diego 5005 Wateridge Vista Drive San Diego CA - Sep 12, 2017
The Rise of Mechatronics at Buca di Beppo - Pasadena 80 West Green Street Pasadena CA - Sep 13, 2017
S2C: FPGA Base prototyping- Download white paper
TrueCircuits: IoTPLL



Internet Business Systems © 2017 Internet Business Systems, Inc.
25 North 14th Steet, Suite 710, San Jose, CA 95112
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy