microQSFP MSA Group Releases Specification for Next-Generation Datacom Connectivity

The microQSFP Version 1.0 Draft Specification Enables Development of New Compact Transceiver Module Solutions Addressing Tomorrow’s Port Density, Data Speed, and System Thermal Requirements.

SANTA CLARA, Ca. – January 15, 2016 – The members of the microQSFP (micro Quad Small Form-Factor Pluggable) Multi-Source Agreement (MSA) group today released draft mechanical specifications of the microQSFP module and cage.  The module and cage draft mechanical details allow system designers, optical module makers and copper cable assembly providers across the industry to begin the process of developing next-generation hardware based on the microQSFP definition.
The founding Promoter members of the MSA include Broadcom, Brocade, Cisco, Dell, Foxconn Interconnect Technology, Huawei, Intel, Juniper Networks, Lumentum, Microsoft, Molex, and
TE Connectivity.  The MSA group is currently soliciting new contributory members to help expand the adoption of microQSFP in the marketplace.  This reflects the growing stability of the specification.
The microQSFP transceiver module is a compact hot-pluggable style input/output (I/O) connector system with four electrical channels that supports both direct attach copper cable assemblies and optical modules.  The unique features include a higher contact density electrical interconnect that provides 33 percent higher density than the existing QSFP connector system, and integrated thermal management that significantly improves the thermal performance over QSFP connectors and cages.
Having the same width as the existing single-channel SFP form factor, microQSFP ports offer the industry a familiar module width, but with up to four times the data capacity.  The microQSFP form factor may be used with 1, 2, or 4 channels and the enhanced thermal features offer a way to support more thermally challenging applications. 
Connector signal integrity performance will support existing industry specifications for up to 28 Gigabits per second (Gb/s) per channel and it is intended to support 50 Gb/s PAM4 requirements as well.  It is also intended that future generations of microQSFP connectors will address higher data rates.  When operating at 25 Gb/s per channel, the solution enables up to 7.2 Terabit per second (Tb/s) per 1RU line card with 72 ports.
“Networking hardware trends are moving to ever higher density interconnects and higher data rates,” said Dale Murray, Principal Analyst with LightCounting Market Research. “Coupled with higher-capacity switching silicon, this results in a need for next-generation connector systems such as microQSFP that provide more throughput while also addressing the thermal challenge in new ways.” 
The microQSFP MSA group can be contacted at www.microQSFP-MSA.com for any questions, membership applications or requests for interviews.
Michael Schoolnik 
Story Public Relations
Direct: 415-674-3816 
Mobile: 415-420-2391

Review Article Be the first to review this article
True Circuits:

Featured Video
Peggy AycinenaWhat Would Joe Do?
by Peggy Aycinena
Qualcomm’s Lu Dai: Energetic leadership for Accellera
More Editorial  
Development Engineer-WEB SKILLS +++ for EDA Careers at North Valley, CA
SOC Logic Design Engineer for Global Foundaries at Santa Clara, CA
Technical Marketing Manager Valley for EDA Careers at San Jose, CA
Sr. Staff Design SSD ASIC Engineer for Toshiba America Electronic Components. Inc. at San Jose, CA
Technical Support Engineer for EDA Careers at Freemont, CA
Upcoming Events
IoT Summit 2017 at Great America ballroom, Santa Clara Convention Center Santa Clara CA - Mar 16 - 17, 2017
SNUG Silicon Valley 2017 at Santa Clara Convention Center Santa Clara CA - Mar 22 - 23, 2017
CDNLive Silicon Valley 2017 at Santa Clara Convention Center Santa Clara CA - Apr 11 - 12, 2017
10th Anniversary of Cyber-Physical Systems Week at Pittsburgh, PA, USA PA - Apr 18 - 21, 2017
DownStream: Solutions for Post Processing PCB Designs
Verific: SystemVerilog & VHDL Parsers
TrueCircuits: IoTPLL

Internet Business Systems © 2017 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy