ANSYS 16.2 Releases The Latest Advances In Systems Engineering Technology

New update of the market-leading engineering simulation platform delivers advancements for manufacturers to spur innovation and increase productivity

PITTSBURGH, Aug. 11, 2015 — (PRNewswire) —  Using the newly released ANSYS® (NASDAQ: ANSS) 16.2, engineers can now create virtual prototypes of complete systems, enabling them to make significant strides in innovation and to unleash next-generation products within their industries.

ANSYS 16.2 includes significant advancements in systems engineering - including new multiphysics and systems capabilities, such as heat transfer and thermal-stress, gas flows, and structural deformation and stress.  A conjugate heat transfer calculation followed by a thermal stress calculation in ANSYS AIM results in the contours of equivalent stress shown on this exhaust header.

As products – from automobiles to smartphones to wearable technology – become more complex and development times continue to shrink, the need to simulate whole systems grows. Through simulation, engineers can take full advantage of the growing number of opportunities presented by the rapid innovation of materials, electronics and processes. While some manufacturers have optimized the design of components or smaller sub-systems, until today's ANSYS release, no comprehensive solution has existed for simulating complete systems. The complexity within systems arises from the challenges of connecting the individual pieces to ensure they work together as designed. By developing complete virtual prototypes, leading companies can jump-start their innovation and leapfrog the competition.  

"ANSYS customers are already solving component and sub-system problems using the most advanced software available. But with today's release of ANSYS 16.2, they expand to the system level," said Jim Cashman, ANSYS president and CEO. "We're offering engineers the most advanced engineering solution technologies on the market to predict real-world product performance using accurate, fast and reliable simulation. By leveraging these new capabilities, enterprises will gain competitive advantage in a competitive market."

"Understanding how the whole system works is critical to developing an optimized design in minimal time," said Jim Shaikh, founder of yoomi, which creates self-warming baby bottle products. "We perform a series of design studies using the simulation software and utilize the results to build a simpler analytical model to crunch through thousands of possible geometric alternatives."

Part of this new simulation approach is made possible by enhancements to ANSYS® Simplorer®, a comprehensive platform for multidisciplinary systems modeling. In this new release, Simplorer can now assemble and simulate electrical, electronic, thermo-fluid, mechanical and embedded software components. The methodology offers advanced 3-D precision when needed, as well as reduced-order modeling for verifying multi-domain system performance interaction.

"The systems enhancements made in ANSYS 16.2 will elevate our product development process with its new 3-D simulation capabilities," said Steve Franceschini, director of engineering at Meggitt OECO, which develops power generation and conversion products. "With the ability to virtually build, test and validate our prototypes with ANSYS 16.2, we will have the ability to further innovate our reliable products faster."

AIM Advancements Expand Multiphysics Reach of Systems Engineering
ANSYS 16.2 offers significant advancements in systems engineering through ANSYS® AIM®, the first integrated and comprehensive multiphysics simulation environment designed for engineers, which was introduced earlier this year. AIM has rapidly developed and ANSYS 16.2 represents its next step forward. Among the many new multiphysics and systems capabilities are heat transfer and thermal-stress, gas flows, and structural deformation and stress.

Optimizing heat transfer and thermal-stress is a critical design issue for many types of industry applications, such as heat exchangers, thermal mixing valves, engine components and electronic devices. In such applications, an accurate prediction of the temperature and heat transfer in both the fluid and solid regions is essential to accurately predict the thermal and thermal-stress performance of the design. AIM now includes new features to support a comprehensive conjugate heat transfer analysis and one-way fluid-structure interaction to compute thermal-stress.

Predicting the correct flow field for compressible gas flows in the subsonic and transonic range is a critical design issue for many different applications. Industry applications include - high speed flow over airfoils or nacelles, and high-pressure flows in natural gas pipelines and valves. AIM now supports an accurate prediction of the flow field, variation of the gas density and thermal behavior for all compressible flow applications, which is critical for predicting the performance of a design. 

In a range of structural applications, nonlinear contact is required to accurately predict deformation and stress in assemblies where multiple components are connected by interference fits, bolts, welds or are otherwise joined together. AIM includes robust nonlinear contact simulation using advanced solver technology for surface-to-surface contact combined with automatic contact surface detection and automatic nonlinear solution control.

AIM makes all of these simulation applications available to experts within one physics domain, as well as product designers who need to span multiple domains, making simulation more broadly applicable across different engineering disciplines.

Customization Critical in Systems Engineering
Due to the complexity of systems engineering, workflow and automation are critical. ANSYS 16.2 automates the overall approach to developing embedded software systems for avionics. A new systems development product, ANSYS® SCADE System Avionics Package, simplifies systems design capabilities for the aerospace and defense industries. It delivers out-of-the-box templates for compliant design systems that are compliant with standard avionics protocols and operating systems, including: ARINC 653, ARINC 429 and AFDX configurations.

To accommodate the needs of a wide varieties of industries that require more customized workflows, ANSYS has added new capabilities in the Workbench platform and ANSYS Customization Toolkit (ACT) to customize simulation tools to accelerate the overall design process and workflows. ACT wizards provide customized simulation instructions and user interfaces to integrate any application in Workbench. These wizards span workflows across applications and guide the user through a single set of instructions.

Custom templates, as a part of the ACT enhancements, are also available in AIM to provide an authoring tool for highly automated and detailed simulation processes. These templates span the entire AIM workflow from geometry to results, as well as across all physics that may be a part of the simulation process. This critical capability enables multi-disciplinary teams to work effectively together and to deliver innovative advances across all disciplines of product design.

About ANSYS, Inc.

ANSYS brings clarity and insight to customers' most complex design challenges through fast, accurate and reliable engineering simulation. Our technology enables organizations ― no matter their industry ― to predict with confidence that their products will thrive in the real world. Customers trust our software to help ensure product integrity and drive business success through innovation. Founded in 1970, ANSYS employs over 2750 professionals, many of them experts in engineering fields such as finite element analysis, computational fluid dynamics, electronics and electromagnetics, embedded software, system simulation and design optimization. Headquartered south of Pittsburgh, U.S.A., ANSYS has more than 75 strategic sales locations throughout the world with a network of channel partners in 40+ countries. Visit for more information.

ANSYS also has a strong presence on the major social channels.  To join the simulation conversation, please visit: 

ANSYS and any and all ANSYS, Inc. brand, product, service and feature names, logos and slogans are registered trademarks or trademarks of ANSYS, Inc. or its subsidiaries in the United States or other countries. All other brand, product, service and feature names or trademarks are the property of their respective owners.




Amy Pietzak


Annette Arribas, CTP


ANSYS,  Inc.  logo.

Photo -

Logo -

To view the original version on PR Newswire, visit:



Review Article Be the first to review this article
CST Webinar Series

True Circuits:

Featured Video
Peggy AycinenaWhat Would Joe Do?
by Peggy Aycinena
Acquiring Mentor: Four Good Ideas, One Great
More Editorial  
Manager, Field Applications Engineering for Real Intent at Sunnyvale, CA
Upcoming Events
SEMICON Europe at Grenoble France - Oct 25 - 27, 2016
ARM TechCon 2016 at Santa Clara Convention Center Santa Clara CA - Oct 25 - 27, 2016
Call For Proposals Now Open! at Santa Clara Convention Center, Santa Clara, CA California CA - Oct 25 - 27, 2016
DeviceWerx - 2016 at Green Valley Ranch Casino & Resort Las Vegas NV - Nov 3 - 4, 2016
DownStream: Solutions for Post Processing PCB Designs
Verific: SystemVerilog & VHDL Parsers

Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy