Samsung Announces Mass Production of Industry’s First 14nm FinFET Mobile Application Processor

SEOUL, South Korea — (BUSINESS WIRE) — February 15, 2015 — Samsung Electronics Co., Ltd., a world leader in advanced semiconductor solutions, announced that it has begun mass production of industry’s first mobile application processor using the advanced 14-nanometer (nm) FinFET process technology.

“Samsung’s advanced 14nm FinFET process technology is undoubtedly the most advanced logic process technology in the industry,” said Gabsoo Han, Executive Vice President of Sales & Marketing, System LSI Business, Samsung Electronics. “We expect the production of our 14nm mobile application processor to positively impact the growth of the mobile industry by enabling further performance improvements for cutting-edge smartphones.”

As the most advanced technology available today, 14nm FinFET process is able to achieve the highest levels of efficiency, performance and productivity. When compared to Samsung’s 20nm process technology, this newest process enables up to 20 percent faster speed, 35 percent less power consumption and 30 percent productivity gain.

By successfully incorporating three-dimensional (3D) FinFET structure on transistors, Samsung has overcome performance and scaling limitations of the planar structure used in previous 20nm and older processes and gained a significant competitive edge in advanced semiconductors for the mobile industry.

This ground-breaking accomplishment is a result of Samsung’s unparalleled R&D efforts in FinFET technology since the early 2000s. Starting with a research article presented at IEDM (International Electron Devices Meeting) in 2003, Samsung has continuously made progress and announced its technological achievements in FinFET research and has also filed a pool of key patents in the field.

As for memory, Samsung has been successfully mass producing its proprietary 3D V-NAND products since 2013. Together with its 3D transistor based FinFET process technology, Samsung has strengthened its leadership in 3D semiconductors in both memory and logic semiconductors that addresses the current scaling limitations with planar designs.

Samsung’s leading-edge 14nm FinFET process will be adopted by its Exynos 7 Octa, then expanded to other products throughout the year.


Samsung Semiconductor Inc.
Lisa Warren-Plungy, 408-544-5377
Email Contact

Review Article Be the first to review this article


Featured Video
Peggy AycinenaWhat Would Joe Do?
by Peggy Aycinena
Acquiring Mentor: Four Good Ideas, One Great
More Editorial  
Sr. staff ASIC Design Engineer -2433 for Microchip at San Jose, CA
SENIOR ASIC Design Engineer for TiBit Communications at Petaluma, CA
Manager, Field Applications Engineering for Real Intent at Sunnyvale, CA
Upcoming Events
DeviceWerx - 2016 at Green Valley Ranch Casino & Resort Las Vegas NV - Nov 3 - 4, 2016
2016 International Conference On Computer Aided Design at Doubletree Hotel Austin TX - Nov 7 - 10, 2016
ICCAD 2016, Nov 7-10, 2016 at Doubletree Hotel in Austin, TX at Doubletree Hotel Austin TX - Nov 7 - 10, 2016
Electric&Hybrid Aerospace Technology Symposium 2016 at Conference Centre East. Koelnmesse (East Entrance) Messeplatz 1 Cologne Germany - Nov 9 - 10, 2016
S2C: FPGA Base prototyping- Download white paper

Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy