All Categories : Technical Papers : RF and Microwave Engineering Bookmark and Share

Title : Passive Microsensor Based on LC Resonators for Substance Identification
Company : Comsol
Date : 11-Apr-2013

Rate This File
5 Stars
4 Stars
3 Stars
2 Stars
1 Star

Featured Paper by D.A. Sanz Becerra, E.A. Unigarro Calpa, J. Osma & F. Segura

A scheme for inductive wireless powering and readout of passive LC sensor is presented. The sensor’s inductor is designed as a planar square coil and is used as the power receiving component. The capacitor is connected directly to the inductor and it was designed as an interdigital capacitor. With a transmitting coil (coupling antenna), an electromagnetic field is generated which couples with the sensor, affecting the impedance of the coupling antenna. This work studies the effects of permittivity variations in a capacitive transducer. All the fabrication and characterization processes were carried out at the clean room of the Universidad de los Andes. The design and the simulation of the wireless passive micro-sensor based on LC resonators were made using COMSOL-4.2a.
User Reviews More Reviews Review This File
CST Webinar Series


Featured Video
Manager, Field Applications Engineering for Real Intent at Sunnyvale, CA
Upcoming Events
SEMICON Europe at Grenoble France - Oct 25 - 27, 2016
ARM TechCon 2016 at Santa Clara Convention Center Santa Clara CA - Oct 25 - 27, 2016
Call For Proposals Now Open! at Santa Clara Convention Center, Santa Clara, CA California CA - Oct 25 - 27, 2016
DeviceWerx - 2016 at Green Valley Ranch Casino & Resort Las Vegas NV - Nov 3 - 4, 2016
S2C: FPGA Base prototyping- Download white paper

Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy