All Categories : Technical Papers : RF and Microwave Engineering Bookmark and Share

Title : Modeling of the Photo-Mechanical Response of Liquid-Crystal Elastomers
Company : Comsol
Date : 07-Apr-2014
Downloads : 3

Rate This File
5 Stars
4 Stars
3 Stars
2 Stars
1 Star

Featured Paper by G. Cerretti, J.-C. Gomez-Lavocat, K. Vynck & D.S. Wiersma

Liquid-crystal elastomers (LCEs) [1] have attracted a great attention in recent years due to their high potential in a wide range of applications, from microfluidics components [2] to artificial muscles [3]. The photo-mechanical response of LCEs is due to their constitutive photo-sensitive molecules, which change shape when absorbing part of the incident light. These microscopic deformations can cause a macroscopic contraction or expansion of the material, depending on the orientation of the molecules, the absorption coefficient of the medium and the light intensity. This phenomenon can be used, for instance, to drive a small actuator with light (see Figure 1). Towards future applications, it is important to develop an ab-initio tool able to couple in an exact way the optical response of the material and its mechanical deformation, in order to gain a deeper understanding of the behavior of LCEs when exposed to a light stimulus. Our work concerns the multi-physics finite-element modeling of the photo-mechanical response of LCEs, using COMSOL Multiphysics. The Radio Frequency package was used to solve the electromagnetic problem of the light scattering and absorption by the object. The resulting material deformation was then evaluated using the Structural Mechanics package by introducing an equation that expresses the strain in the material as a function of the retrieved light intensity. Using this approach, we modeled the macroscopic deformation of a two-dimensional LCE-based cantilever in response to a steady-state plane wave, as a function of the molecular alignment, absorption coefficient and light intensity, and compared our results with a simplified analytical model assuming the Beer-Lambert's law of absorption [4]. A very good agreement was found in the limit of a relatively strong absorption coefficient and/or thick sample, thereby validating our model. On the other hand, we found that when the wave nature of light becomes important, for instance when interferences due to multiple reflections at the interfaces of the medium cannot be neglected, the deformation of the material can deviate strongly from expectations. This illustrates clearly the relevance of our model to treat more realistic cases. In conclusion, by solving exactly the electromagnetic problem, our finite-element model completes the theoretical models known so far on the deformation of LCE-based materials. It can be easily applied to more complex geometries and may find use in a near future in the design of actuators for lab-on-a-chip devices [5] or in the implementation of soft motors [6].
User Reviews More Reviews Review This File
Synopsys: Custom Compiler

True Circuits:

Featured Video
Peggy AycinenaWhat Would Joe Do?
by Peggy Aycinena
Reverie: All That Glitters is not Past
More Editorial  
Development Engineer-WEB SKILLS +++ for EDA Careers at North Valley, CA
Digital and FPGA Hardware Designer for Giga-tronics Incorporated at San Ramon, CA
Technical Marketing Manager Valley for EDA Careers at San Jose, CA
Senior Physical Design Engineer for Ambiq Micro at Austin, TX
Technical Support Engineer for EDA Careers at Freemont, CA
Upcoming Events
Zuken Innovation World 2017, April 24 - 26, 2017, Hilton Head Marriott Resort & Spa in Hilton Head Island, SC at Hilton Head Marriott Resort & Spa Hilton Head Island NC - Apr 24 - 26, 2017
2017 IoT Developers Conference at Santa Clara Convention Center California - Apr 26 - 27, 2017
DownStream: Solutions for Post Processing PCB Designs
Verific: SystemVerilog & VHDL Parsers
TrueCircuits: IoTPLL

Internet Business Systems © 2017 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy