Power, accuracy and noise aspects in CMOS mixed-signal design

Title: Power, accuracy and noise aspects in CMOS mixed-signal design
Author: Sanduleanu, Mihai Adrian Tiberiu
ISBN: 90-3651265-4
©1999, Mihai A.T. Sanduleanu

Table of Contents

Selected Symbols and Abbreviations
Chapter 1   Introduction
  1.1. Motivation
  1.2. Problem definition
  1.3. Scope and outline
Chapter 2 Power considerations in sub-micron digital CMOS
  2.1. Introduction
  2.2. Fundamental limits
  2.3. From fundamental limits to practical limits of power. An architecture level approach
  2.4. S/N ratio and power in fixed point applications
  2.5. Adders and computational power
  2.6. Ways to low-power in digital
  2.7. Example of a digital video filter
  2.8. Conclusions
  2.8. References
Chapter 3 Power considerations in sub-micron analog CMOS
  3.1. Introduction
  3.2. Process tuning towards digital needs. Consequences on analog
  3.3. Fundamental limits
  3.4. From fundamental limits to practical limits of power. Noise related power
  3.5. From fundamental limits to practical limits of power. Mismatch related power
  3.6. Power estimations in continuous time filters
  3.7. Conclusions
Chapter 4 Gm-C integrators for low-power and low voltage applications. A gaussian polyphase filter for mobile transceivers in 0.35mm CMOS
  4.1. Introduction
  4.2. Large swing and high linearity transconductor
  4.3. Low voltage current Gm-C integrator with high power efficiency
  4.4. Low-power luminance video filter. Noise driven power
  4.5. Low-power, gaussian, polyphase filter for mobile transceivers. Matching driven power
  4.6. Conclusions
Chapter 5 Chopping: a technique for noise and offset reduction
  5.1. Introduction
  5.2. Ways to reduce offset and 1/f noise
  5.3. Chopping seen as a modulation technique
  5.4. Noise modulation
  5.5. Chopped amplifiers and offset reduction
  5.6. Low-power low-voltage chopped transconductance amplifier for noise and offset reduction
  5.7. A low-power bandgap voltage reference
  5.8. Conclusions
Chapter 6 Low-noise, low residual offset, chopped amplifiers for high-end application
  6.1. Introduction
  6.2. Low-pass filtering in a digital audio system. Application specific constraints
  6.3. The gain stage
  6.4. A low noise, low residual offset, chopped amplifier in 0.8mm CMOS
  6.5. A low noise, low residual offset, chopped amplifier in 0.5mm CMOS
  6.6. Conclusions
Chapter 7 A 16-bit D/A interface with Sinc approximated semidigital reconstruction filter
  7.1. Introduction
  7.2. Bitstream D/A conversion system with time-discrete filtering
  7.3. S-D modulators and noise shaping
  7.4. Semidigital FIR filter principles
  7.5. Semidigital FIR filter design
  7.6. Noise properties of the D/A interface
  7.7. Realisation
  7.8. Experimental results
  7.9. Interpolative D/A converter with Sinc approximation in the time domain
  7.10. Conclusions
Chapter 8 Conclusions
  8.1. Summary
  8.2. Conclusions
  8.3. Original contributions
  8.4. Recommendations for further research
Appendix 1
Appendix 2
Appendix 3
CST Webinar Series


Featured Video
Peggy AycinenaWhat Would Joe Do?
by Peggy Aycinena
Acquiring Mentor: Four Good Ideas, One Great
More Editorial  
Manager, Field Applications Engineering for Real Intent at Sunnyvale, CA
Upcoming Events
DeviceWerx - 2016 at Green Valley Ranch Casino & Resort Las Vegas NV - Nov 3 - 4, 2016
2016 International Conference On Computer Aided Design at Doubletree Hotel Austin TX - Nov 7 - 10, 2016
ICCAD 2016, Nov 7-10, 2016 at Doubletree Hotel in Austin, TX at Doubletree Hotel Austin TX - Nov 7 - 10, 2016
Electric&Hybrid Aerospace Technology Symposium 2016 at Conference Centre East. Koelnmesse (East Entrance) Messeplatz 1 Cologne Germany - Nov 9 - 10, 2016
S2C: FPGA Base prototyping- Download white paper

Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy