A 16-bit D/A interface with Sinc approximated semidigital reconstruction filter

Prev TOC Next

7.2. Bitstream D/A conversion system with time discrete filtering

Fig.7.1 illustrates the block diagram of a bitstream D/A conversion system[12]. This system consists of a digital filter, a noise shaper and a reconstruction

Fig.7.1: Bitstream D/A conversion system

filter. Eventually, the power amplifier can be integrated on the same chip. In the digital filter the data rate of the input digital word is increased by interpolative upsampling 64 times. The filter interpolates the input signal and calculates intermediate points. The low-pass filter limits sharply the audio-band at 20KHz. In order to reduce the quantization noise in the baseband two techniques are used: oversampling and noise shaping.

By oversampling in the digital filter, the quantization is performed at higher clock rates and the resulting quantization noise power is spread over a larger bandwidth. This yields lower noise in the baseband. Noise shaping is a technique used to reduce the quantization noise in the audioband, by shaping the quantization noise out of the baseband. In combination with oversampling this method gives sufficient reduction of the quantization noise to realize high accuracy systems. In the 1-bit D/A converter, the digital sequence present at the output of the noise-shaper (1,0,0,1,0…) it is translated into an accurate two-level analog signal (A,-A,-A,A,-A,…) with high linearity. In the same block, a sampled data FIR filter (LPD) will suppress the out-of-band noise. To reduce harmonic distortion and intermodulation products in the output power amplifier, the level of the high frequency quantization noise has to be lower than -50dB. A first order, continuous-time analog low pass filter (LPA) will reconstruct the signal by attenuating the spectral repetitions at multiples of sampling frequency.

In fig.7.1 the signal and the noise spectra of the D/A system are shown. For simplicity, the oversampling frequency is not drawn at the right scale (4 times instead of 64 times). Fig.a shows that a sampled signal consists of an infinite sequence of the original spectra shifted by multiples of fs. Therefore also the noise power is shown up to ½fs. Oversampling (see fig.b) spreads the noise over a larger frequency band and places the signal spectra further from each other. The noise shaper shapes the noise out of the baseband to higher frequencies (see fig.c). In fig.d+e, the signal at the output of the FIR filter (doted) and the signal at the output of the LPA filter (thick lines). The noise at high frequencies is filtered by the time discrete filter. The final operation, i.e. the low-pass continuous-time filtering, removes the undesired spectral repetitions from the signal.


Featured Video
Senior Electrical Engineer for Allen & Shariff Corporation at Pittsburgh, PA
Senior Formal FAE Location OPEN for EDA Careers at San Jose or Anywhere, CA
Design Verification Engineer for intersil at Morrisville, NC
Principle Electronic Design Engr for Cypress Semiconductor at San Jose, CA
ASIC Hardware Engineer for BAE Systems Intelligence & Security at Arlington, VA
Upcoming Events
DVCon US 2018 at Double Tree Hotel San Jose CA - Feb 26 - 1, 2018
5th EAI International Conference on Big data and Cloud Computing Challenges at Vandalur, Kelambakkam high road chennai Tamil Nadu India - Mar 8 - 9, 2018
DATE '18: Design, Automation and Test in Europe at International Congress Center Dresden Ostra-Ufer 2 Dresden Germany - Mar 19 - 23, 2018
DownStream: Solutions for Post Processing PCB Designs
Verific: SystemVerilog & VHDL Parsers
TrueCircuits: UltraPLL

Internet Business Systems © 2018 Internet Business Systems, Inc.
25 North 14th Steet, Suite 710, San Jose, CA 95112
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise