CHAPTER 5

Chopping: a technique for noise and offset reduction


Prev TOC Next

5.4. Noise modulation

From the previous paragraph we have seen the modulation effects of chopping on a input process x(t). It is important to notice the difference between a narrow-band process and a broadband process after chopper modulation. The input stationary random process x(t) can be white noise or 1/f noise applied to the amplifier A(f) which has a band limiting effect on the noise.

5.4.1. White noise modulation

For the beginning, assume that x(t) is a broadband random process white noise like with a power spectral density Swhite. In order to simplify the analysis, the gain of the amplifier is taken to be 0dB and the frequency transfer has a first order behavior:

(5.12)

The power spectral density of the noise at the output can be found from (5.11) with assumption that Sxx(f)=Swhite:

(5.13)

The series from (5.13) can be computed by using Poisson summation rule [9]. For large values of fLPT (fLPT>>1) we get:

(5.14)

In conclusion, the chopper modulator has a small influence on the white noise when the bandwidth of the amplifier is larger than the chopping frequency. This is not the case for sampling where undersampling phenomena actually increases the noise in the baseband [1]. The power spectral density of the white noise will be unchanged as long as the bandwidth of the amplifier is larger than the chopping frequency. Chopping at frequencies higher than fLP will reduce the power spectral density of the white noise as explained in reference [4]. Although white noise is a fundamental limitation it can be reduced by chopping. Oversampling in D/A and A/D converters has about the same effect on the baseband white noise.

5.4.2. 1/f noise modulation

When narrow band random processes are applied at the input of the chopper modulator the situation will change. The input power spectral density of 1/f noise is:

(5.15)

In the constant c we have included the 1/f noise constant k1/f process dependent and the geometry factor, dependent on the dimensions of the transistors. After chopping the PSD of the modulated 1/f noise becomes:

(5.16)

Fig.5.5 shows the normalized PSD of the flicker noise after chopping when fLPT>>1. The effect of chopper modulation on the flicker noise will be the reduction of the PSD of the output noise at low frequencies. At odd multiples of the chopper frequency the

Fig.5.5: PSD of 1/f noise after chopper modulation

PSD of the flicker noise increases. Thus, under the same condition fLPT>>1 the PSD of the white noise after chopping remains the same and the PSD of the flicker noise at low frequencies will be reduced.

Featured Video
Jobs
Principal Engineer FPGA Design for Intevac at Santa Clara, CA
Development Engineer-WEB SKILLS +++ for EDA Careers at North Valley, CA
Senior DSP Architect / System Engineer for General Dynamics Mission Systems at Scottsdale, AZ
FAE FIELD APPLICATIONS SAN DIEGO for EDA Careers at San Diego, CA
ASIC FPGA Verification Engineer for General Dynamics Mission Systems at Bloomington, MN
SOC Logic Design Engineer for Global Foundaries at Santa Clara, CA
Upcoming Events
FPGA 2017 at 350 Calle Pincipal, Marriott Hotel Monterey CA - Feb 22 - 24, 2017
DVCon 2017 Conference at DoubleTree Hotel San Jose CA - Feb 27 - 2, 2017
IoT Summit 2017 at Great America ballroom, Santa Clara Convention Center Santa Clara CA - Mar 16 - 17, 2017
SNUG Silicon Valley 2017 at Santa Clara Convention Center Santa Clara CA - Mar 22 - 23, 2017



Internet Business Systems © 2017 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy