CHAPTER 1

Introduction


Prev TOC Next

1.2. Problem definition

The performance required points out towards higher integration and processing capability at lower and lower power consumption. Digital signal processing has become the major solution in all applications due to versatility, processing capabilities and last but not least lower power consumption. That is why the design effort in the last years has been directed towards low-power in digital. For this reasons, the CMOS process is tuned towards digital performance with negative consequences on analog functionality.

What is then the situation in analog? Although digital dominates in size, analog dominates the interface side and the high speed side. A/D and D/A conversion, filters, amplifiers, voltage references, power-up and power-down converters are possible analog applications. Analog remains the bottleneck in the design trajectory due to the efforts to cope with digital requests. If we are considering the analog part up to few years ago, the evolution has been going on at a slower pace. In the 90ís new technologies are evolved that are merging the high performance needed for analog with the density of CMOS. The design philosophy has to change: you have not to design the best analog circuit per se but the one that fits the best when used together with the DSP section [13]. As often it is told, DSP is the new name of analog: in this situation analog is not an art by itself but has to be in contact with DSP architectural definition. Many technologies are possible from CMOS analog-enhanced to BiCMOS, GaAs etc. CMOS can quite often make the job and guarantee a single chip solution. That is why it should be the first choice whenever possible.

In spite of these concerns related to performance degradation of analog circuits, there has not been a major focus on a design methodology of analog circuits which addresses power. When power is on the discussion floor, all aspects of the circuit, important from specifications point of view, are contributing to it. The approach which is presented here takes another viewpoint, in which possible aspects of a system design are investigated with the goal of reducing power consumption from the analog side.

We state that low power in analog means to fit the design within the specifications with the minimum possible power consumption by using the most efficient architecture.

Claims of low power should be doubled by specifications and the proof that the choice of the architecture is the best. The large variability of analog circuits makes almost impossible a thorough analysis. Only the inventiveness of the analog designer which is, most of the time, experience based or heuristic can generate new solutions. Mixed-signal design should make the best use of different signal representations like: sampled-data, time-discrete or time-continuous to find the best partitioning of the system in terms of performance and power. The ultimate goal is to shift from one domain to another e.g. digital or analog, sampled-data or continuous time and to find the best architecture to fit within the requirements.

CST: Webinar November 9, 2017

Aldec

Featured Video
Editorial
Peggy AycinenaWhat Would Joe Do?
by Peggy Aycinena
DVCon Europe 2017: Munich and So much more
More Editorial  
Jobs
Senior Front-End RTL Design AE for EDA Careers at San Jose, CA
Technical Support Engineer EU/Germany/UK for EDA Careers at N/A, United Kingdom
Senior R&D Engineer...Timing Closure Specialist for EDA Careers at San Jose or Anywhere, CA
Upcoming Events
25th IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC 2017) at Yas Viceroy Abu Dhabi Yas Marina Circuit, Yas Island Abu Dhabi United Arab Emirates - Oct 23 - 25, 2017
ARM TechCon 2017 at Santa Clara Convention Center Santa Clara CA - Oct 24 - 26, 2017
MIPI DevCon Bangalore 2017 at The Leela Palace Bengaluru India - Oct 27, 2017
MIPI DevCon Hsinchu City 2017 at Sheraton Hsinchu Hotel Taiwan - Oct 31, 2017
CST: Webinar series
TrueCircuits: IoTPLL



Internet Business Systems © 2017 Internet Business Systems, Inc.
25 North 14th Steet, Suite 710, San Jose, CA 95112
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise