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5 Developing Acceleratable 
Universal Verification 
Components (UVCs)

This chapter discusses the following topics:

• Introduction to UVM Acceleration

• UVC Architecture

• UVM Acceleration Package Interfaces

• SCE-MI Hardware Interface

• Building Acceleratable UVCs in SystemVerilog

• Building Acceleratable UVCs in e

• Collector and Monitor

5.1 Introduction to UVM Acceleration

The acceleratable Universal Verification Methodology (UVM) packages allow portions of a standard UVM 
environment to be accelerated using a hardware accelerator. The extended UVM acceleration packages 
include support for SystemVerilog and the e high-level verification languages (HVLs). Though this chapter 
only discusses UVM, acceleration for both the Open Verification Methodology (OVM) and UVM are 
supported. So, any references to UVM equally apply to OVM.

The purpose of extending UVM to include hardware acceleration is to enable the verification environment to 
execute faster. Hardware acceleration can dramatically increase run time performance and, therefore, allow 
more testing to be done in a shorter amount of time, and making the verification engineer more productive.

Although the main purpose of using the UVM acceleration library is to allow a hardware accelerator to be 
used, it is not restricted to hardware acceleration alone. UVM acceleration is truly an extension of the 
standard simulation-only UVM, and is fully backwards compatible with it. This means that Universal 
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Verification Components (UVCs) architected to be acceleratable can be used in either a simulation-only 
environment or a hardware-accelerated environment. However, UVCs that were not architected to leverage 
hardware acceleration will require some modifications to enable them to be used in a hardware-accelerated 
environment.

5.2 UVC Architecture

This section briefly describes the standard UVC architecture and explains how this differs from the 
acceleratable UVC architecture.

5.2.1 Standard UVC Architecture

UVCs based on the standard UVM typically contain the following three main components, which are 
themselves contained within an agent component, as shown in Figure 5-1 below. Each agent contains:

• A sequencer (also known as sequence driver)

• A driver (also known as BFM)

• A monitor

Figure 5-1 Standard UVC Architecture

5.2.2 Active Agent

The architecture shown in Figure 5-1 is typical of an agent that actively drives stimulus into the device under 
test (DUT).

Stimulus is provided by the sequencer in an abstract form known as a data item. Data items are transactions 
that only contain stimulus information; the interface and protocol details related to the DUT are abstracted 
out. Data items in SystemVerilog are classes extended from the uvm_sequence_item class. In e, these are 
extended from the any_sequence_item item.

DUT Interface

Monitor Sequencer

Driver

Agent



Advanced Verification Topics 197

Passive Agent

The driver connects to the DUT interface and applies the data items provided by the sequencer to this 
interface in accordance with the interface protocol.

A monitor is used to observe the activity on the DUT interface as well as activity on internal nodes of the 
DUT to collect coverage metrics about what parts of the DUT have been exercised. A standard UVM monitor 
usually includes a hard-coded connection to the interface as well as the coverage-collection functionality. 
Having a hard-coded connection to the interface is not ideal if the UVC is to be used to verify a DUT at 
multiple levels of abstraction because a new monitor will need to be created for each abstraction level.

5.2.3 Passive Agent

A UVC can be configured solely to collect DUT activity rather than to stimulate activity. The collected 
information can then be used by checkers, coverage tools, and the testbench itself for cases where up-to-date 
status is required. This is a typical scenario when the DUT is integrated into a system. Under these 
circumstances, the sequencer and driver components are disabled leaving only the monitor. The agent in this 
scenario is referred to as a passive agent.

Coverage information allows the verification team to ensure that the DUT is thoroughly tested by measuring 
the features that have been exercised, and the ones that have not. Coverage information can also be used by a 
scoreboard component that can be used to track the features that have been tested.

A UVC can be used to verify models at various levels of abstraction, each with different types of interfaces. 
Decoupling the stimulus generation from driving the physical DUT interface allows stimulus to be reused for 
verifying different abstractions of a given model by simply selecting the appropriate driver. This is most 
applicable to simulation environments that support the broadest range of HVL constructs.

5.2.4 Acceleratable UVCs

Acceleratable UVCs benefit from a slightly different architecture than simulation-only UVCs in order to 
maximize the performance gain provided by the hardware accelerator. Therefore, in order to describe 
acceleratable UVCs, a brief introduction to hardware acceleration must be given. More information about 
hardware acceleration can be found in the UXE User’s Guide, which is included with the Cadence Palladium 
XP family of hardware accelerators.

5.2.4.1 Hardware Acceleration

Hardware acceleration is performed by combining a software simulator that executes on a workstation with a 
dedicated hardware-acceleration machine. The complete verification environment is partitioned to have 
some models executed by the simulator and others by the hardware accelerator. Models described using 
high-level verification language (HVL) constructs are executed by the simulator, and are said to reside in the 
HVL partition. Models described using hardware description language (HDL) constructs are executed by the 
hardware accelerator, and are said to reside in the HDL partition.

Hardware accelerators can only accelerate models that have been described using the acceleratable subset of 
an HDL. This subset is usually assumed to be the same as the register-transfer-level (RTL) subset defined for 
hardware synthesis, but this is often not the case. Hardware acceleration platforms usually accept a number of 
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behavioral constructs as well as synthesizable constructs. So, the level of support is greater than that 
contained in the synthesizable subset of constructs; however, it is still a subset of the complete HDL. Any 
component that cannot be modeled using this subset must remain in the HVL partition. One requirement 
that must be fulfilled is that all models in the HDL partition must have signal-level interfaces. However, 
signal-level connections joining components in the HVL partition to components in the HDL partition are 
not efficient for achieving high runtime performance. Instead, a transaction-based connection must be used. 
The industry recognized this concept as being a key requirement in order to achieve high runtime 
performance when connecting a software simulator to a hardware accelerator. This led to the creation and 
standardization of the Accellera Standard Co-Emulation API: Modeling Interface, more commonly referred 
to as SCE-MI.

The use of a transaction-based interface between the software simulator and the hardware accelerator not 
only allows the communication between the two engines to be made more efficient, it also allows the 
execution of simulation models to be made more efficient. This is because simulation performance is reduced 
when the models being executed become more detailed and require timing. Therefore, simulating untimed 
models at the transaction level improves simulation performance.

The partitioning of transaction-level components and cycle-accurate signal-level components between the 
software simulator and hardware accelerator respectively, leads to a change in the overall verification 
environment architecture. Two separate top levels of hierarchy are created for each of the two partitions, with 
all communication between the two partitions being performed at the transaction level. Components like 
scoreboards, sequencers and monitors are placed in the HVL partition, while components like clock 
generators, reset generators, and the signal-level DUT are placed in the HDL partition, as shown in Figure 
5-2.

Figure 5-2 Components of the HVL and HDL Partitions

Acceleratable UVC Architecture

To enable high runtime performance to be achieved, all models that reside in the HVL partition should 
execute at the transaction level, and all models that require cycle-accurate timing should reside in the HDL 
partition. Transactors are used to allow components within each partition to communicate with each other 
efficiently. However, the architecture shown in Figure 5-1 on page 196 does not allow a clean division of 
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functionality to be made because the monitor operates at the same abstraction level as the DUT, which for 
acceleration would be at the signal level. To address this, the monitor should be split into two components, a 
monitor and a collector, as shown in Figure 5-3.

Figure 5-3 Acceleratable UVC Architecture

The purpose of the collector is to allow the physical interface required by the DUT to be separated from the 
functionality provided by the monitor. This means that the monitor and sequencer, and all hierarchical levels 
above, can operate at the transaction level, irrespective of the type of interface required by the DUT. Modeling 
these components at this level of abstraction is good for reuse as well as for increasing execution performance. 
The collector and driver components implement the physical interface required to enable the UVC to connect 
to the DUT, which can be easily altered depending on the type of interface required without affecting the rest 
of the UVC.

As mentioned previously, for the hardware acceleration mode, models that reside in the HVL partition 
operate at the transaction level, while those that reside in the HDL partition execute at the signal level. One 
consequence of configuring the UVC to use hardware acceleration is that the acceleratable collector and 
driver components must incorporate transactors to convert signal-level activity to transactions, and vice 
versa.

Acceleratable Transactors

Transactors are an abstraction bridge between the components that operate at the transaction level and the 
components that operate at the signal level. For hardware acceleration, transactors extend this capability by 
bridging between transaction-based components being executed by a software simulator and signal-based 
components being executed by a hardware accelerator as shown in Figure 5-4 on page 200.
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Figure 5-4 Acceleratable Transactors

To bridge between the HVL partition and the HDL partition, the transactors have three main components:

• Proxy model

The proxy model is instantiated in the HVL partition and accesses the communication channel by way of 
an Application Programming Interface (API). 

• Bus Functional Model (BFM)

The BFM is instantiated in the HDL partition and also accesses the communication channel by way of an 
API. 

• Communication channel that connects between the Proxy and BFM

Each channel is uni-directional and this is reflected in the choice of interface used within each of the 
partitions. 

A simple transactor with one input and one output channel is shown in Figure 5-5.

Figure 5-5 Transactor Example with Input and Output Channels

To enable transactors to operate on different vendor’s hardware acceleration platforms, a standard 
vendor-independent API was defined and standardized by Accellera for connecting any software simulator to 
any hardware accelerator. The standard, known as the Standard Co-Emulation API: Modelling Interface 

(SCE-MI), defines a multichannel communication interface.
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SCE-MI initially defined a macro-based interface. But later, it added a simpler Direct Programming Interface 
(DPI) and a more complex but feature-rich pipes-based interface. All of the above interfaces are described in 
the Standard Co-Emulation API: Modelling Interface (SCE-MI) Reference Manual, Version 2.0, or later, and is 
available from Accellera. The UVM Acceleration interface uses SCE-MI pipes communications channels.

SCE-MI pipes are unidirectional channels that allow transactions to be streamed from components in the 
HVL partition to components in the HDL partition and vice versa. A C language API is available to 
components residing in the HVL partition and a SystemVerilog API is available to components residing in 
the HDL partition.

To simplify the use of SCE-MI in the development of acceleratable UVCs, a UVM Acceleration library, 
uvm_accel, is provided in the Cadence UXE software release to hide the semantics of the SCE-MI C API 
presented to models that reside in the HVL partition. The uvm_accel package provides a UVM-based API 
that is native to the verification language being used. Most UVM verification environments are built using 
SystemVerilog, e, or a combination of both, and the uvm_accel library supports both. The uvm_accel 
package allows the proxy model part of a transactor to be written in SystemVerilog or e, whichever is the most 
suitable language, which is often the same as the language used to model the rest of the verification 
environment.

The BFM part of the transactor, implemented using the acceleratable subset of SystemVerilog and Verilog, 
uses the SCE-MI SystemVerilog interfaces to access the SCE-MI pipes based channels. These interfaces 
provide SystemVerilog tasks and functions that greatly simplifies the usage. More information about the 
SCE-MI Pipes interfaces can be obtained from the Standard Co-Emulation API: Modeling Interface 
(SCE-MI) Reference Manual from Accellera.

5.3 UVM Acceleration Package Interfaces

The UVM package provides two unidirectional interfaces, one to access input channels and the other to 
access output channels. The terms input and output are defined in relation to the hardware accelerator with 
input being into the hardware accelerator and output being out of the hardware accelerator.

For SystemVerilog, each interface is defined as a class that inherits from the 
uvm_accel_pipe_proxy_base. For e, each interface is defined as a unit that inherits from the 
uvm_accel_pipe_proxy_base unit.



202 Advanced Verification Topics

Developing Acceleratable Universal Verification Components (UVCs) 

5.3.1 uvm_accel_pipe_proxy_base Task and Function 
Definitions (SystemVerilog)

SystemVerilog uvm_accel_input_pipe_proxy

The SystemVerilog uvm_accel_input_pipe_proxy class definition is shown below:

class uvm_accel_input_pipe_proxy #(type T=uvm_object,

Task / Function Definition

extern function void 

build_phase(phase);
Called during the environment build_phase phase. Gets 
configuration parameters such as hdl_path and 
autoflush and uses them to configure the proxy. 

To improve performance, you should run with 
pipe_proxies configured with autoflush disabled, 
whenever possible. 

For more information on autoflush, refer to the Standard 
Co-Emulation API: Modeling Interface (SCE-MI) 
Reference Manual.

extern function void 

end_of_elaboration_phase(phase);
Called at the end of elaboration. hdl_path must be 
configured before this function is called since port binding 
occurs during this phase.

extern function void 

set_pipe_name(string name);
Used to define the full hierarchical instance name of a pipe. 
The pipe name must be defined before 
end_of_elaboration_phase if it is to take effect. The 
name is given as a string.

extern function string 

get_pipe_name();
Returns the hierarchical instance name of the pipe that will 
be, or has been bound.

extern function bit set_autoflush(bit 

enable);
Sets the autoflush semantics of the pipe. An input of 1 turns 
autoflush on for all subsequent messages, and an input of 0 
turns it off for subsequent messages. This setting can be 
made at anytime. The default is autoflush enabled (1).

extern function bit get_autoflush(); Returns the autoflush setting of the pipe.

extern function int unsigned 

get_pipe_depth();
Returns the number of elements that the pipe holds.

extern function int unsigned 

get_pipe_width();
Returns the number of bytes of each element.

extern function int unsigned 

get_pipe_handle();
Returns the internal handle that is used by the proxy to 
communicate with the actual pipe. This handle should not 
be used directly. Each actual pipe will have a unique handle.
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type S=uvm_accel_object_serializer#(T)) // Parameterizable

// serializer type

extends uvm_accel_pipe_proxy_base;

uvm_put_imp #(T,uvm_accel_input_pipe_proxy#(T)) put_export; // TLM port 

// binding

uvm_analysis_port #(T) put_ap; // Analysis port

extern function new(string name, uvm_component parent); // Constructor

extern task put(T t); // Blocking put

extern function bit try_put (T t); // Non-blocking put

extern function bit can_put(); // Non-blocking can

// put test

endclass 

Each input pipe proxy instance can be customized to accept different types of data item and use different 
serialization schemes. Customization is achieved via the parameters uvm_object and 
uvm_accel_object_serializer. Each data item is defined as a class in SystemVerilog which inherits 
from uvm_sequence_item. A data item typically contains data members that may or may not be 
randomized, UVM utility fields to enable or disable UVM automation for each of the data members, and 
constraints to constrain any data members that are to be randomized. In addition, serialization and 
de-serialization methods may also be provided for specific fields of the data item where the default 
serializer/de-serializer is not sufficient.

Table 5-1    SystemVerilog uvm_accel_input_pipe_proxy Task and Function 
Definitions

SystemVerilog uvm_accel_output_pipe_proxy

The SystemVerilog uvm_accel_output_pipe_proxy class definition is shown below:

class uvm_accel_output_pipe_proxy#(type T=uvm_object,

type S=uvm_accel_object_serializer#(T)) // Parameterizable 

// deserializer type

extends uvm_accel_pipe_proxy_base;

uvm_get_imp#(T,uvm_accel_output_pipe_proxy#(T)) get_export; // TLM port 

binding

uvm_analysis_port#(T) get_ap; // Analysis port

extern function new(string name, uvm_component parent);// Constructor

extern task get(inout T t); // Blocking get

extern function bit try_get (T t); // Non-blocking get

extern function bit can_get(); // Non-blocking can get

endclass 

Task / Function Definition

extern task put(T t); Sends a user-defined data item of type T.

extern function bit try_put (T t); Sends a user-defined data item of type T, if possible.

extern function bit can_put(); Returns 1 if the component is ready to accept the data item; 
0 otherwise.
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Each output pipe proxy can be customized to accept different types of data item and use different 
de-serialization schemes. Customization is achieved by way of the parameters uvm_object and 
uvm_accel_object_serializer.

Table 5-2    SystemVerilog uvm_accel_output_pipe_proxy Task and Function 
Definitions 

5.3.2 uvm_accel_pipe_proxy_base Task and Function 
Definitions (e)

e uvm_accel_input_pipe_proxy

Table 5-3    e uvm_accel_input_pipe_proxy Unit Definition 

template unit uvm_accel_input_pipe_proxy of (<type>) like 

uvm_accel_pipe_proxy_base {

!value : <type>; 

m_in : interface_imp of tlm_put of <type> is instance; //TLM Interface

put(value: <type> ) //Blocking put

try_put(value: <type>) : bool //Non-blocking put

can_put(): bool //Non-blocking can 

//put test

};

Each input pipe proxy instance can accept different types of data items. Each data item is defined as a unit in 
e, and is like any_sequence_item. A data item typically contains data members that may or may not be 
randomized, and includes constraints to constrain data members that are to be randomized. In addition, 

Task / Function Definition

extern task get(inout T t); Provides a new data item of type T.

extern function bit try_get (T t); Provides a new data item of type T, if possible

extern function bit can_get(); Returns 1 if a new data item can be provided immediately 
upon request, 0 otherwise.

Task / Function Definition

get_pipe_full_path() : string Returns the hierarchical instance name of the pipe that will be, or has 
been bound.

set_autoflush(enable : bool) Sets the autoflush semantics of the pipe. An input of 1 enables 
autoflush for all subsequent messages, and an input of 0 disables it 
for subsequent messages. This setting can be made at anytime. The 
default is autoflush enabled (1).

get_pipe_autoflush() : bool Returns the autoflush setting of the pipe.

get_pipe_depth() : uint Returns the number of elements that the pipe holds.
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pack and unpack methods may also be provided for specific fields of the data item where the default 
packer or unpacker is not sufficient.

Table 5-4    e uvm_accel_input_pipe_proxy Task and Function Definitions 

e uvm_accel_output_pipe_proxy

The e uvm_accel_output_pipe_proxy unit definition is shown below:

template unit uvm_accel_output_pipe_proxy of (<type>) like 

uvm_accel_pipe_proxy_base {

!m_value : <type>;

m_out : interface_imp of tlm_get of <type> is instance; // TLM Interface

get(value: *<type>) // Blocking get

try_get(value: *<type>): bool // Non-blocking 

// get

can_get(): bool // Non-blocking 

// can get

};

Each output pipe proxy can be customized to accept different types of data item. 

Table 5-5    e uvm_accel_output_pipe_proxy Task and Function Definitions 

5.4 SCE-MI Hardware Interface

The SCE-MI API used by the BFMs that exist in the HDL partition are defined in the Standard 
Co-Emulation API: Modeling Interface (SCE-MI) Reference Manual. The HDL side API for input and 
output interfaces are given here for reference. For complete details, refer to the SCE-MI Reference Manual.

Task / Function Definition

put(value: <T>) Sends a user-defined data item of type T.

try_put(value: <T>) : bool Sends a user-defined data item of type T, if possible.

can_put(): bool Returns TRUE if the component is ready to accept the data item; 
FALSE otherwise.

Task / Function Definition

get(value: *<T>) Sends a user-defined data item of type T.

try_get(value: *<T>): bool Sends a user-defined data item of type T, if possible

can_get(): bool Returns 1 if a new data item can be provided immediately upon 
request, 0 otherwise.
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5.4.1 SCE-MI Input Pipe Interface

interface scemi_input_pipe();

parameter BYTES_PER_ELEMENT = 1;

parameter PAYLOAD_MAX_ELEMENTS = 1;

parameter BUFFER_MAX_ELEMENTS = <vendor specified>;

localparam PAYLOAD_MAX_BITS = PAYLOAD_MAX_ELEMENTS * BYTES_PER_ELEMENT * 8;

task receive(

input int num_elements, // # elements to be read

output int num_elements_valid, // # elements that are valid

output bit [PAYLOAD_MAX_BITS-1:0] data, // data

output bit eom ); // end-of-message marker flag

<implementation goes here>

endtask

function int try_receive( // return: #requested elements 

// that are actually received

input int byte_offset, // byte_offset into data

input int num_elements, // # elements to be read

output bit [PAYLOAD_MAX_BITS-1:0] data, // data

output bit eom ); // end-of-message marker flag

<implementation goes here>

endfunction

function int can_receive(); // return: #elements that can 

// be received

<implementation goes here>

endfunction

modport receive_if(import receive, try_receive, can_receive );

endinterface

5.4.2 SCE-MI Output Pipe Interface

interface scemi_output_pipe();

parameter BYTES_PER_ELEMENT = 1;

parameter PAYLOAD_MAX_ELEMENTS = 1;

parameter BUFFER_MAX_ELEMENTS = <vendor specified>;

localparam PAYLOAD_MAX_BITS = PAYLOAD_MAX_ELEMENTS * BYTES_PER_ELEMENT * 8;

task send(

input int num_elements, // input: #elements to be 

written

input bit [PAYLOAD_MAX_BITS-1:0] data, // input: data

input bit eom ); // input: end-of-message marker flag

<implementation goes here>

endtask

task flush;
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<implementation goes here>

endtask

function int try_send(  // return: #requested elements

// that are actually sent

input int byte_offset, // input: byte_offset into 

// data, below

input int num_elements, // input: #elements to be sent

input bit [PAYLOAD_MAX_BITS-1:0] data, // input: data

input bit eom ); // input: end-of-message marker 

// flag

<implementation goes here>

endfunction

function int can_send(); // return: #elements that can be sent

<implementation goes here>

endfunction

modport send_if( import send, flush, try_send, can_send );

endinterface

5.5 Building Acceleratable UVCs in SystemVerilog

5.5.1 Data Items

Data items are transactions, which are implemented as class objects that are inherited from 
uvm_sequence_item, that itself inherits from uvm_transaction. A data item contains data members, 
UVM utility fields to enable or disable UVM automation for each of the data members, and constraints to 
constrain any data members that are to be randomized. In addition, you may provide your own serialization 
and de-serialization methods. The code snippet below, taken from a simple SystemVerilog example, yamp, 
shows the class definition of a data item called yamp_transfer along with its data members.

typedef enum bit { READ, WRITE } direction_t; // Enumerated type used to

// define memory access

// direction

class yamp_transfer extends uvm_sequence_item; // yamp_transfer class 

// inherited from

//‘uvm_sequence_item’

// class

rand direction_t direction; // Memory access direction

//(READ OR WRITE)

rand bit [2:0] wait_states; // Used by the Driver to

// insert wait states

rand bit [3:0] transfer_delay; // Used by the Driver to

// insert a transfer delay

rand bit [7:0] size; // Size of data transfer

rand bit [15:0] addr; // Start address of memory

// access
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rand bit [15:0] data []; // Data to be read or

// written to memory

SystemVerilog data members can be randomized as shown by preceding their declaration with the keyword 
rand. Data items can contain statically sized data members as well as dynamically sized data members such 
as data[] shown in the example.

Data items that contain randomly assigned data members require constraints to constrain the range of values 
they will be assigned. Constraints can be defined within the class definition as shown below or in a separate 
constraints file.

constraint default_wr_size_c {(direction == WRITE) -> data.size() == size; 

(direction == READ) -> data.size() == 0; }

constraint default_size_c { size inside { [1:10] }; }

constraint default_delay_c { transfer_delay inside {[1:5]};}

uvm_object_utils macros are used to enable common operations declared in uvm_object such as copy, 
compare, and print as shown below.

`uvm_object_utils_begin(yamp_transfer) // Start of UVM utility

// macro definitions

`uvm_field_enum(direction_t, direction, UVM_ALL_ON)

`uvm_field_int(wait_states, UVM_ALL_ON)

`uvm_field_int(transfer_delay, UVM_ALL_ON)

`uvm_field_int(size, UVM_ALL_ON)

`uvm_field_int(addr, UVM_ALL_ON + uvm_HEX)

`uvm_field_array_int(data, UVM_ALL_ON + UVM_HEX + UVM_NOPACK)

`uvm_object_utils_end // End of UVM utility

// macro definitions 

In order to transfer a data item from the proxy in the HVL partition to the BFM in the HDL partition, the data 
members must be packed, or serialized, into a vector of bits as shown below.

Figure 5-6 Packed Implementation of Data Item yamp_transfer

UVM provides packing capabilities which may or may not be suitable for the data item to be transferred. 
When data members are statically sized the standard packer is usually sufficient but alternative packing 
schemes may be required for dynamically sized data members if they have specific requirements. If a field is 
to be packed using a customized serializer the attribute UVM_NOPACK should be set using the 
`uvm_object_util_* macro. If the dynamic members do not have any specific requirements then the 
standard UVM packer can be used for static and dynamic data members. An example of specific pack 
function required by the yamp example is shown below.

function void do_pack (uvm_packer packer);

foreach(data[i]) packer.pack_field_int(data[i],16);

endfunction

Data items received by the proxy in the HVL partition, from the BFM in the HDL partition, must be 
unpacked back into the data item class structure. It is the unpack operation that usually dictates whether 

dir wait_states addrsizetransfer_delay data []
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custom pack and unpack functions are required. The reverse operation employed by the packer must be used 
by the unpacker. Therefore, if a customized packer was defined then a customized unpacker or deserializer 
must also be defined. The code snippet below shows the custom unpacker used by the yamp example.

function void do_unpack (uvm_packer packer);

data = new [size]; //size was automatically unpacked

foreach(data[i]) data[i] = packer.unpack_field_int(16);

endfunction

5.5.2 Acceleratable Driver (SystemVerilog)

The driver is responsible for taking data items from the sequencer and driving them onto the DUT interface. 
The DUT can be modeled at multiple levels of abstraction. So, the driver must be able to accommodate each 
of the interfaces presented by each type of model. This not only affects the type of physical interface used it 
also affects the functionality of the driver itself. To be able to reconfigure the driver to operate at different 
levels of abstraction, an enumerated type uvm_abstraction_level_enum is used. This enumerated type is 
defined in the uvm_accel package provided by Cadence.

In SystemVerilog, the enumerated type is defined as follows:

typedef enum bit [1:0] {UVM_SIGNAL, UVM_TLM, UVM_ACCEL} 

uvm_abstraction_level_enum

The values defined by this type configure the UVC to operate in pure simulation at the signal level 
(UVM_SIGNAL) or transaction level (UVM_TLM) or use hardware acceleration (UVM_ACCEL).

When configured for hardware acceleration an acceleratable transactor is used to bridge the gap between the 
components that operate at the transaction level, which are executed by the software simulator, and the 
components that operate at the signal level, which are executed by the hardware accelerator. This same 
acceleratable transactor can also be used for signal based simulation. However, UVCs that have been created 
for simulation typically use a virtual interface to connect the driver to the DUT and implement the BFM 
using behavioral constructs. This implementation can continue to be used for simulation to allow a gradual 
migration to hardware acceleration if required. When using the behavioral BFM the 
uvm_abstraction_level_enum should be set to UVM_SIGNAL. If the UVC is to be used to verify abstract 
SystemC TLM models, the uvm_abstraction_level_enum should be set to UVM_TLM. The behavior of the 
driver along with the interface it uses to connect to this model should be customized to suit this type of 
model.

The following code shows the SystemVerilog code that defines the part of the driver that resides in the HVL 
partition for the yamp example.

class yamp_master_driver extends uvm_driver #(yamp_transfer);

// Virtual interface used to drive HDL signals

virtual interface yamp_if vif;

// UVM abstraction level

protected uvm_abstraction_level_enum abstraction_level = UVM_SIGNAL;

// SCE-MI input pipe interface

protected uvm_accel_input_pipe_proxy#(yamp_transfer) m_ip;

// SCE-MI output pipe interface



210 Advanced Verification Topics

Developing Acceleratable Universal Verification Components (UVCs) 

protected uvm_accel_output_pipe_proxy#(yamp_transfer) m_op;

// UVM build function

extern virtual function void build_phase(uvm_phase phase);

// UVM run task

extern virtual task run_phase(uvm_phase phase);

// Task used to drive signals in UVM_SIGNAL mode

extern virtual protected task get_and_drive();

// Task used to drive signals in UVM_ACCEL mode

extern virtual protected task get_and_drive_accel();

endclass : yamp_master_driver

The yamp_master_driver inherits from the uvm_driver class and operates on a data item of type 
yamp_transfer. This example shows a virtual interface, vif, which is used for signal level simulation, and 
two uvm_accel pipe proxy interfaces, m_ip and m_op that are used for hardware acceleration.

Two uvm_accel pipe proxy interfaces are required for the yamp example since bidirectional communication 
is required. Each uvm_accel pipe proxy interface is unidirectional; therefore, the need for one input 
interface and one output interface. For most protocols, bidirectional communication is required so it is 
typical for two or more interfaces to be instantiated. Each uvm pipe proxy interface takes a data item type 
as a parameter.

Standard UVM tasks and functions must be defined for each driver. It is recommended that different tasks for 
each level of abstraction are defined rather than implementing the driver functionality in one task for all the 
supported levels of abstraction. In the yamp example, the get_and_drive() task implements the 
signal-level simulation driver functionality and the get_and_drive_accel() task implements the 
hardware-acceleratable driver functionality. Separating the code into distinct task makes the code easier to 
understand and debug.

5.5.2.1 build_phase(uvm_phase phase) Function

Each UVM component that inherits from the uvm_component class should provide an implementation for 
a build_phase function. Each build_phase function is called during the UVM build_phase simulation 
phase to construct the environment hierarchy. In the example shown below, the abstraction_level is 
used to determine the type of interface required by the driver.

function void yamp_master_driver::build_phase(uvm_phase phase);

super.build_phase(phase);

if (abstraction_level == UVM_ACCEL)

begin

m_ip = new("m_ip", this); // Construct an input port

m_op = new("m_op", this); // Construct an output port

uvm_config_db#(string)::set(this,"m_ip", "hdl_path", "inbox0");

// hdl_path used for input port binding

uvm_config_db#(string)::set(this,"m_op", "hdl_path", "outbox0");

// hdl_path used for output port binding

end

endfunction : build_phase
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For hardware acceleration, the abstraction_level must be set to UVM_ACCEL to inform the driver to 
build and configure a transaction based interface. For the yamp example, two ports are constructed: an input 
port called m_ip and an output port called m_op. These ports must be bound to valid channels before they 
can be used and this is achieved by defining a string called hdl_path for each port.

Port binding is configured by calling the UVM uvm_config_db#(string)::set function for each port 
defined in the HVL partition. The uvm_config_db#(string)::set function causes configuration 
settings to be created and placed in the uvm_config database. The uvm_config_db#(string)::set 
function requires the name of the port instance in the HVL partition, the name of the string variable to be 
configured (which is hdl_path for port binding), and the full hierarchical path from the top level of the 
HDL partition down to the appropriate port instance in the HDL design hierarchy. In the example given, the 
full hierarchical path is defined by concatenating the m_hdl_path variable with the specific port instance 
name. The m_hdl_path variable is set by the test environment and is the hierarchical path from the top level 
of the HDL partition down to the BFM instance. The agent then appends the specific port instance name to 
this path.

If the HDL port, defined by hdl_path, is compatible with the HVL port, it will be bound during the 
end_of_elaboration_phase phase; if not, an error will occur. Therefore, the hdl_path for each port 
must be defined before the end_of_elaboration_phase phase; it is common to do this during the 
build_phase phase as shown.

5.5.2.2 run_phase(uvm_phase phase) Task

Each UVM component that inherits from the uvm_component class, should provide an implementation for 
a run_phase task. Each run_phase task is called during the UVM run_phase simulation phase and 
defines the behavior of the driver. The required functionality of the driver will differ depending on the level 
of abstraction used to implement the DUT. Therefore, the abstraction_level is tested and used to alter 
the driver’s behavior as shown below.

task yamp_master_driver::run_phase(uvm_phase phase);

if (abstraction_level == UVM_SIGNAL) // Signal level simulation

fork

get_and_drive(); // Drive signal level DUT interface

join

else if (abstraction_level == UVM_ACCEL) // Hardware acceleration fork

fork

get_and_drive_accel(); // Drive SCE-MI transaction level

// interface

join

endtask 

If the abstraction_level is set to UVM_SIGNAL, and a signal-level behavioral BFM has been created for 
simulation, which is typical of legacy UVCs, a get_and_drive() task should be called. This task 
implements the functionality required to drive this type of interface.

If the abstraction_level is set to UVM_ACCEL, a get_and_drive_accel() task should be called. 
Different tasks are defined for simulation and acceleratable drivers to allow a legacy behavioral 
implementation to be used, and coexist with an acceleratable implementation. Acceleratable drivers can be 
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used with hardware acceleration or simulation. Therefore, the same task could be called, irrespective of 
whether the abstraction_level is set to UVM_SIGNAL or UVM_ACCEL. This is configured in the 
run_phase task.

5.5.2.3 get_and_drive() Task

The get_and_drive() task requests data items from the sequencer, and when appropriate drives the virtual 
DUT interface signals. It implements the signal-level protocol required by the DUT and drives the DUT 
signals directly, as shown in the code snippet from the yamp example below.

task yamp_master_driver::get_and_drive();

if(vif.sig_reset!==0) @(negedge vif.sig_reset);

forever begin

@(posedge vif.clk);

seq_item_port.get_next_item(req); // Get new item from

// the sequencer

if (transfer.direction == WRITE) begin  // Drive the virtual

// virtual interface 

// signals

vif.rd <= 0;

for (int i=0;i < transfer.size; i++) begin

repeat (transfer.wait_states) @(posedge vif.clk);

vif.we <= 1;

vif.di <= transfer.data[i];

@(posedge vif.clk);

vif.addr <= vif.addr + 1;

vif.we <= 0;

<rest of implementation>

seq_item_port.item_done(); // Communicate item done

// to the sequencer

endtask : get_and_drive

5.5.2.4 get_and_drive_accel() Task

The get_and_drive_accel() task uses the uvm_accel interfaces to send and receive data items as 
transactions from the HVL partition into the HDL partition where a hardware BFM drives the DUT signals. 
The get_and_drive_accel() task does not implement any signal-level protocol functionality it operates 
purely at the transaction level. The HDL BFM is implemented as a separate module and is instantiated in the 
HDL hierarchy partition which will be described in the next section.

The uvm_accel ports use standard transaction-level modeling (TLM) semantics to send and receive 
transactions by way of SCE-MI communication channels. The code snippet below shows the blocking put 
and blocking get tasks being used to send and receive data items.

task yamp_master_driver::get_and_drive_accel();

forever begin

seq_item_port.get_next_item(req); // Get new item from the sequencer

m_ip.put(req); // Drive the item

if(req.direction == READ) begin
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m_op.get(req);

seq_item_port.item_done(req);

end

else begin

//Communicate item done to the sequencer

seq_item_port.item_done();

end

<rest of implementation>

end

endtask

Once a data item has been taken from the sequencer, it can be put into an input channel using the blocking 
put() function associated with the port that is bound to that channel. The blocking put() function blocks 
until the transaction has been taken from the channel at the opposite end. This means that the 
get_and_drive_accel() task does not need to implement any sort of wait before informing the 
sequencer that the current sequence item has been done. This is simpler than in the non-accelerated case 
where you must implement any code required to allow one sequence to be completed before the next one is 
started.

5.5.2.5 Acceleratable Driver BFM (SystemVerilog)

The acceleratable driver BFM resides in the HDL partition and implements the signal level protocol 
functionality required to drive the DUT. The acceleratable driver BFM contains SCE-MI pipes interfaces 
which are bound to ports within the driver component that resides in the HVL partition. The 
get_and_drive_accel() task passes transactions through a SCE-MI pipe to the driver BFM which must 
extract the transaction and apply it to the DUT signal level interface.

The acceleratable driver BFM must be written in acceleratable SystemVerilog or Verilog for it to be 
accelerated by a hardware accelerator. The driver code should be partitioned into separate files to reflect code 
that is to be simulated and code that is to be accelerated. This simplifies the overall compilation process and 
makes the code easier to maintain.

Note The Cadence UVM Acceleration package provides e and SystemVerilog interfaces to allow access to 
the pipes on the HVL side. Therefore, the same acceleratable driver BFM can be used in both environments.

Each driver BFM must instantiate appropriate SCE-MI pipes ports to mirror those defined in the driver’s 
proxy which exists in the HVL partition. If the ports at each end of the communication channel are not 
compatible, they will not be bound and elaboration will fail. The code snippet below, taken from the yamp 
example, shows a SCE-MI input pipe called inbox0() and a SCE-MI output pipe called outbox0().

module yamp_master_driver_bfm (

input wire clk,

output reg cmd,

output reg[7:0]  len,

output reg we,

output reg ce,

output reg rd,

output reg[15:0] addr, di,

input wire[15:0] dout,
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input wire scemi_mode

); // SCE-MI input pipe instantiation

scemi_input_pipe #(2, 1) inbox0 (); // SCE-MI output pipe instantiation

scemi_output_pipe #(2, 1) outbox0 ();

<rest of implementation>

Both inbox0 and outbox0 have the parameters BYTES_PER_ELEMENT set to 2 and 
PAYLOAD_MAX_ELEMENTS set to 1.

BYTES_PER_ELEMENT = 2 means that each message element received will contain two bytes.

PAYLOAD_MAX_ELEMENTS = 1 means that only one message element will be received at a time.

These two parameters define the width of the data that can be received by an input port or sent by an output 
port. Each ports width is defined by the parameter PAYLOAD_MAX_BITS that is defined as shown in the 
following formula:

PAYLOAD_MAX_BITS = PAYLOAD_MAX_ELEMENTS * BYTES_PER_ELEMENT * 8;

Therefore, the ports in the example above are capable of receiving or sending messages only 16-bits wide 
during each transfer.

A UVC can contain different types of driver to suit the level of abstraction used to model the DUT. If a 
simulation-based driver and an acceleratable driver have both been implemented, it is important to ensure 
that only one driver drives the DUT at any one time. The abstraction_level_enum should be used to 
define the value of scemi_mode. When the SCE-MI hardware acceleratable driver is to be used scemi_mode 
should be set to 1; for all other scenarios, scemi_mode should be set to 0. This is usually defined at the top 
level of the UVC. The code snippet below, taken from the yamp example, shows that the output we_r, ce_r, 
and rd_r are tri-stated, unless scemi_mode has been set to 1.

// Output tri-state logic

always@(we_r or scemi_mode) we <= scemi_mode3we_r:1'bz;

always@(ce_r or scemi_mode) ce <= scemi_mode3ce_r:1'bz;

always@(rd_r or scemi_mode) rd <= scemi_mode3rd_r:1'bz;

<rest of implementation>

The SCE-MI pipes HDL API provides blocking and non-blocking tasks and functions. The code snippet 
below, taken from the yamp example shows how the blocking receive() task is used.

always@(posedge clk) begin

if(scemi_mode) begin

inbox0.receive(1, num_recv, idata, eom);

{len_r, delc, ws, cmd_r} = idata;

<rest of implementation>

At the positive edge of the clock called clk, the receive() task associated with inbox0 is called with the 
following arguments:

Num_elements = 1

Num_elements_valid = num_recv

Output_data = idata

EOM = eom
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Num_elements defines how many elements are to be put into the variable idata when a transaction has been 
received. This example deals with one message element at a time. A transaction can contain many message 
elements, and the BFM designer needs to decide the most efficient implementation.

Num_elements_valid defines the number of received elements that are valid. This can be used by the BFM 
to determine the elements to be used when multiple elements are received in one transfer. This is not relevant 
in this example because only one element can be received at one time.

Output_data defines the variable in which received data will be written into. The width of this variable 
should be defined by PAYLOAD_MAX_BITS as described above.

EOM defines whether the message element received is a single message element or a part of a continuous 
stream of message elements. Using EOM, it is possible to send transactions that contain a variable number of 
message elements during each transfer. When EOM is set to 1, the element received is the last element. When 
EOM is set to 0, there are more elements available to read.

More information about the SCE-MI hardware API can be found in the Standard Co-Emulation API: 
Modeling Interface (SCE-MI) Reference Manual.

5.6 Building Acceleratable UVCs in e 

5.6.1 Data Items

Data items are transactions that are implemented as struct objects that derive from any_sequence_item. A 
data item contains data members, constraints to constrain any data members that are to be randomized, and 
methods for manipulating the data members or the struct itself. The code snippet below, taken from the e 
yamp example, shows the struct definition of a data item called transfer_s along with its data 
members.

struct transfer_s like any_sequence_item { // transfer_s struct

%direction : yamp_direction_t; // Memory access 

// direction 

// (READ OR WRITE)

%wait_states : uint (bits : 3); // Used by the driver

// to insert wait states

%delay_clocks : uint (bits : 4); // Used by the driver

// to insert a transfer

// delay

%size : uint (bits : 8); // Size of data transfer

%addr : yamp_addr_t; // Start address of

// memory access

%data : list of uint (bits : YAMP_DATA_WIDTH); // Data to be

// read or written to

// memory

Data items that contain randomly assigned data members require constraints to constrain the range of values 
they will be assigned. Constraints can be defined within the struct definition as shown below or in a separate 
constraints file.
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keep soft data.size() == size;

keep direction == WRITE  =>  data.size() == size;

keep soft size > 0;

keep soft size < 10;

To transfer a data item from the proxy in the HVL partition to the BFM in the HDL partition, the data 
members must be packed into a vector of bits as shown in Figure 5-7 below.

Figure 5-7 Packed Implementation of Data Item yamp_transfer

e provides built-in pack and unpack methods to create a list of bits that is a concatenation of the members 
contained in the data item struct. The acceleratable driver must understand the packing scheme used in 
order to extract each member from the data item received.

5.6.2 Acceleratable Driver (e) 

The UVC BFM is responsible for taking data items from the sequencer and driving them onto the DUT 
interface. The DUT can be modeled at multiple levels of abstraction. So, the BFM must be able to 
accommodate each of the interfaces presented by each type of model. This not only affects the type of physical 
interface used, it also affects the functionality of the BFM itself. To be able to reconfigure the BFM to operate 
at different levels of abstraction, an enumerated type uvm_abstraction_level_t is used. This 
enumerated type is defined in the uvm_accel package provided by Cadence.

In e, the enumerated type is defined as follows:

type uvm_abstraction_level_t : [UVM_SIGNAL, UVM_TLM, UVM_ACCEL]

(bits : 2);

The values defined by this type configure the UVC to operate at one of the following levels:

• Pure simulation at the signal level (UVM_SIGNAL)

• Pure simulation at the transaction level (UVM_TLM)

• Use hardware acceleration (UVM_ACCEL)

When configured for hardware acceleration, an acceleratable transactor is used to bridge the gap between the 
components that operate at the transaction level and the signal level. Transaction-level components are 
executed by the software simulator, and signal-level components are executed by the hardware accelerator. 
The same acceleratable transactor can be used in a simulation-only environment as well as with hardware 
acceleration. However, multi-purpose UVCs that are configured to operate in UVM_SIGNAL mode typically 
implement the BFM in behavioral e code. This implementation can continue to be used for simulation to 
allow a gradual migration to hardware acceleration, if required. When using the behavioral BFM, the 
uvm_abstraction_level_t should be set to UVM_SIGNAL. If the UVC is to be used to verify abstract 
SystemC TLM models, the uvm_abstraction_level_t should be set to UVM_TLM. The behavior of the 
driver along with the interface that it uses to connect to this model, should be customized to suit this type of 
model.

direction wait_states addrsizedelay_clocks Data
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One of the main features of e is that it provides aspect orientation. This means that objects can be extended to 
accommodate new functionality or manipulate existing functionality. For UVM Acceleration it is common 
for the different abstraction levels to be implemented by extending existing units.

The following code shows the e code which defines the part of the driver that resides in the HVL partition for 
the yamp example.

extend UVM_ACCEL master_bfm {

keep hdl_path() == "xi0"; // HDL path

m_ip : uvm_accel_input_pipe_proxy of transfer_s is instance; // Input 

// Port

keep m_ip.hdl_path() == "inbox0";

m_op : uvm_accel_output_pipe_proxy of transfer_s is instance; // Output 

// Port

keep m_op.hdl_path() == "outbox0";

m_in :  interface_port of tlm_put of transfer_s is instance; // Input 

// Port

m_out : interface_port of tlm_get of transfer_s is instance; // Output 

// Port

connect_ports() is also{ // Port 

// Binding

m_in.connect(m_ip.m_in);

m_out.connect(m_op.m_out);

};

drive_transfer (cur_transfer : transfer_s) // Drive 

// transfer

// method

};

The master_bfm extends the generic BFM and is extended further when the abstraction level is set to 
UVM_ACCEL. This example shows two uvm_accel pipe proxy interfaces, m_ip and m_op that are used for 
hardware acceleration.

Two uvm_accel pipe proxy interfaces are required for the yamp example since bidirectional communication 
is required. Each uvm_accel pipe proxy interface is unidirectional; hence, the need for one input interface 
and one output interface. For most protocols, bidirectional communication is required. So, it is typical for two 
or more interfaces to be instantiated. Each uvm_accel pipe proxy interface takes a data item type as a 
parameter.

Standard UVM methods must be defined for each driver. These methods are customized using extensions 
depending on the abstraction level. In the yamp example the drive_transfer() method implements the 
driver functionality. Separating the code into distinct abstraction levels makes the code easier to understand 
and debug.

5.6.2.1 drive_transfer Method

When the master_bfm is extended to operate in UVM_ACCEL mode, acceleratable interfaces are used to send 
and receive data items as transactions from the HVL partition into the HDL partition where a HDL BFM 
drives the DUT signals. The drive_transfer() method does not implement any signal level protocol 
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functionality; it operates purely at the transaction level in this mode. The HDL BFM is implemented as a 
separate module and is instantiated in the HDL partition that will be described in the next section.

The uvm_accel ports use standard transaction-level modeling (TLM) semantics to send and receive 
transactions via SCE-MI communication channels. The blocking put() and blocking get() functions are 
shown in the code snippet from the e yamp example below.

drive_transfer (cur_transfer : transfer_s)  @p_sys_smp.clk is only {

cur_transfer.start_transfer(); // Get item from 

// sequencer

if (cur_transfer.direction == WRITE) {

m_in$.put(cur_transfer); // Drive write 

// transaction

}

else if(cur_transfer.direction == READ) {

var ref_data : list of uint (bits : YAMP_DATA_WIDTH) =

cur_transfer.get_data().copy();

cur_transfer.data.resize(0); // reset the 

// data

m_in$.put(cur_transfer); // Drive read 

// transaction

m_out$.get(cur_transfer); // Get read data

};

cur_transfer.end_transfer(); // End current 

// sequence

};

Once a data item has been taken from the sequencer it can be put into an input channel using the blocking 
put() function associated with the port that is bound to that channel. The blocking put() function blocks 
until the transaction has been taken from the channel at the opposite end. This means that the 
drive_transfer() method does not need to implement any sort of wait before informing the sequencer 
that the current sequence item has been done. This is simpler than in the non-accelerated case where you 
must implement any code required to allow one sequence to be completed before the next one is started.

5.6.2.2 Acceleratable Driver BFM (e)

The acceleratable driver BFM resides in the HDL partition and implements the signal level protocol 
functionality required to drive the DUT. The acceleratable driver BFM contains SCE-MI pipes interfaces 
which are bound to ports within the driver component which resides in the HVL partition. The 
drive_transfer() method passes transactions through a SCE-MI pipe to the driver BFM that must 
extract the transaction and apply it to the DUT signal level interface.

The acceleratable driver BFM must be written in acceleratable SystemVerilog or Verilog in order for it to be 
accelerated by a hardware accelerator. The driver code should be partitioned into separate files to distinguish 
between the code that is to be simulated and the code that is to be accelerated. This simplifies the overall 
compilation process and makes the code easier to maintain.

The UVM Acceleration package provides e and SystemVerilog interfaces to allow access to the pipes on the 
HVL side. The same acceleratable driver BFM can be used in both environments.
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For more information about the acceleratable driver BFM, see Section 5.5.2.5, “Acceleratable Driver BFM 
(SystemVerilog),” on page 213.

5.7 Collector and Monitor

The collector and monitor components have a similar implementation to the driver and sequencer 
components described in the previous sections, except that the collector and monitor observe and track 
activity on the DUT interface rather than drive it.

The collector component is responsible for making the physical connection to the DUT and should use 
abstraction_level to determine the kind of interface that should be built during the UVM 
build_phase simulation phase in a similar fashion as previously described for the driver.

The main difference between a collector and a driver is that a collector is a passive component. It does not 
drive values onto the DUT interface. Therefore, it does not need to be impacted by the tri-stating of any of the 
signals. Apart from this, a collector should be architected and partitioned in a similar fashion to a driver.

5.8 Summary

Simulation performance can slow down to unacceptable levels when scaling the verification run to the chip or 
system level. Yet, the demand keeps rising to run such simulations to establish a higher level of confidence in 
the quality of the product being verified. The acceleratable Universal Verification Methodology (UVM) 
allows portions of a standard UVM environment to be accelerated using a hardware accelerator. In fact, the 
methodology does not restrict its usage to hardware acceleration alone. UVM acceleration is truly an 
extension of the standard simulation-only UVM, and is fully backwards compatible with it. This means that 
Universal Verification Components (UVCs) architected to be acceleratable can be used in either a 
simulation-only environment or a hardware-accelerated environment. 

This chapter shows how UVM users can build acceleratable UVCs in either SystemVerilog or e. It describes 
how the UVC agent can be architected to operate in simulation as well as hardware acceleration. The 
underlying technology is compliant with the Accellera SCE-MI (Standard Co-Emulation API: Modeling 
Interface) standard providing additional vendor neutrality to the UVM community. In addition, the 
methodology is compliant with advanced verification techniques such as metric-driven verification, allowing 
the user community to further build additional verification intelligence into their verification arsenal. 


