
Advanced Verification Topics 195

5 Developing Acceleratable
Universal Verification
Components (UVCs)

This chapter discusses the following topics:

• Introduction to UVM Acceleration

• UVC Architecture

• UVM Acceleration Package Interfaces

• SCE-MI Hardware Interface

• Building Acceleratable UVCs in SystemVerilog

• Building Acceleratable UVCs in e

• Collector and Monitor

5.1 Introduction to UVM Acceleration

The acceleratable Universal Verification Methodology (UVM) packages allow portions of a standard UVM
environment to be accelerated using a hardware accelerator. The extended UVM acceleration packages
include support for SystemVerilog and the e high-level verification languages (HVLs). Though this chapter
only discusses UVM, acceleration for both the Open Verification Methodology (OVM) and UVM are
supported. So, any references to UVM equally apply to OVM.

The purpose of extending UVM to include hardware acceleration is to enable the verification environment to
execute faster. Hardware acceleration can dramatically increase run time performance and, therefore, allow
more testing to be done in a shorter amount of time, and making the verification engineer more productive.

Although the main purpose of using the UVM acceleration library is to allow a hardware accelerator to be
used, it is not restricted to hardware acceleration alone. UVM acceleration is truly an extension of the
standard simulation-only UVM, and is fully backwards compatible with it. This means that Universal

196 Advanced Verification Topics

Developing Acceleratable Universal Verification Components (UVCs)

Verification Components (UVCs) architected to be acceleratable can be used in either a simulation-only
environment or a hardware-accelerated environment. However, UVCs that were not architected to leverage
hardware acceleration will require some modifications to enable them to be used in a hardware-accelerated
environment.

5.2 UVC Architecture

This section briefly describes the standard UVC architecture and explains how this differs from the
acceleratable UVC architecture.

5.2.1 Standard UVC Architecture

UVCs based on the standard UVM typically contain the following three main components, which are
themselves contained within an agent component, as shown in Figure 5-1 below. Each agent contains:

• A sequencer (also known as sequence driver)

• A driver (also known as BFM)

• A monitor

Figure 5-1 Standard UVC Architecture

5.2.2 Active Agent

The architecture shown in Figure 5-1 is typical of an agent that actively drives stimulus into the device under
test (DUT).

Stimulus is provided by the sequencer in an abstract form known as a data item. Data items are transactions
that only contain stimulus information; the interface and protocol details related to the DUT are abstracted
out. Data items in SystemVerilog are classes extended from the uvm_sequence_item class. In e, these are
extended from the any_sequence_item item.

DUT Interface

Monitor Sequencer

Driver

Agent

Advanced Verification Topics 197

Passive Agent

The driver connects to the DUT interface and applies the data items provided by the sequencer to this
interface in accordance with the interface protocol.

A monitor is used to observe the activity on the DUT interface as well as activity on internal nodes of the
DUT to collect coverage metrics about what parts of the DUT have been exercised. A standard UVM monitor
usually includes a hard-coded connection to the interface as well as the coverage-collection functionality.
Having a hard-coded connection to the interface is not ideal if the UVC is to be used to verify a DUT at
multiple levels of abstraction because a new monitor will need to be created for each abstraction level.

5.2.3 Passive Agent

A UVC can be configured solely to collect DUT activity rather than to stimulate activity. The collected
information can then be used by checkers, coverage tools, and the testbench itself for cases where up-to-date
status is required. This is a typical scenario when the DUT is integrated into a system. Under these
circumstances, the sequencer and driver components are disabled leaving only the monitor. The agent in this
scenario is referred to as a passive agent.

Coverage information allows the verification team to ensure that the DUT is thoroughly tested by measuring
the features that have been exercised, and the ones that have not. Coverage information can also be used by a
scoreboard component that can be used to track the features that have been tested.

A UVC can be used to verify models at various levels of abstraction, each with different types of interfaces.
Decoupling the stimulus generation from driving the physical DUT interface allows stimulus to be reused for
verifying different abstractions of a given model by simply selecting the appropriate driver. This is most
applicable to simulation environments that support the broadest range of HVL constructs.

5.2.4 Acceleratable UVCs

Acceleratable UVCs benefit from a slightly different architecture than simulation-only UVCs in order to
maximize the performance gain provided by the hardware accelerator. Therefore, in order to describe
acceleratable UVCs, a brief introduction to hardware acceleration must be given. More information about
hardware acceleration can be found in the UXE User’s Guide, which is included with the Cadence Palladium
XP family of hardware accelerators.

5.2.4.1 Hardware Acceleration

Hardware acceleration is performed by combining a software simulator that executes on a workstation with a
dedicated hardware-acceleration machine. The complete verification environment is partitioned to have
some models executed by the simulator and others by the hardware accelerator. Models described using
high-level verification language (HVL) constructs are executed by the simulator, and are said to reside in the
HVL partition. Models described using hardware description language (HDL) constructs are executed by the
hardware accelerator, and are said to reside in the HDL partition.

Hardware accelerators can only accelerate models that have been described using the acceleratable subset of
an HDL. This subset is usually assumed to be the same as the register-transfer-level (RTL) subset defined for
hardware synthesis, but this is often not the case. Hardware acceleration platforms usually accept a number of

198 Advanced Verification Topics

Developing Acceleratable Universal Verification Components (UVCs)

behavioral constructs as well as synthesizable constructs. So, the level of support is greater than that
contained in the synthesizable subset of constructs; however, it is still a subset of the complete HDL. Any
component that cannot be modeled using this subset must remain in the HVL partition. One requirement
that must be fulfilled is that all models in the HDL partition must have signal-level interfaces. However,
signal-level connections joining components in the HVL partition to components in the HDL partition are
not efficient for achieving high runtime performance. Instead, a transaction-based connection must be used.
The industry recognized this concept as being a key requirement in order to achieve high runtime
performance when connecting a software simulator to a hardware accelerator. This led to the creation and
standardization of the Accellera Standard Co-Emulation API: Modeling Interface, more commonly referred
to as SCE-MI.

The use of a transaction-based interface between the software simulator and the hardware accelerator not
only allows the communication between the two engines to be made more efficient, it also allows the
execution of simulation models to be made more efficient. This is because simulation performance is reduced
when the models being executed become more detailed and require timing. Therefore, simulating untimed
models at the transaction level improves simulation performance.

The partitioning of transaction-level components and cycle-accurate signal-level components between the
software simulator and hardware accelerator respectively, leads to a change in the overall verification
environment architecture. Two separate top levels of hierarchy are created for each of the two partitions, with
all communication between the two partitions being performed at the transaction level. Components like
scoreboards, sequencers and monitors are placed in the HVL partition, while components like clock
generators, reset generators, and the signal-level DUT are placed in the HDL partition, as shown in Figure
5-2.

Figure 5-2 Components of the HVL and HDL Partitions

Acceleratable UVC Architecture

To enable high runtime performance to be achieved, all models that reside in the HVL partition should
execute at the transaction level, and all models that require cycle-accurate timing should reside in the HDL
partition. Transactors are used to allow components within each partition to communicate with each other
efficiently. However, the architecture shown in Figure 5-1 on page 196 does not allow a clean division of

HVL Partition

Scoreboard

Sequencer

Monitor

HDL Partition

Clock Generator

Reset Generator

DUT

Transactors

Advanced Verification Topics 199

Acceleratable UVCs

functionality to be made because the monitor operates at the same abstraction level as the DUT, which for
acceleration would be at the signal level. To address this, the monitor should be split into two components, a
monitor and a collector, as shown in Figure 5-3.

Figure 5-3 Acceleratable UVC Architecture

The purpose of the collector is to allow the physical interface required by the DUT to be separated from the
functionality provided by the monitor. This means that the monitor and sequencer, and all hierarchical levels
above, can operate at the transaction level, irrespective of the type of interface required by the DUT. Modeling
these components at this level of abstraction is good for reuse as well as for increasing execution performance.
The collector and driver components implement the physical interface required to enable the UVC to connect
to the DUT, which can be easily altered depending on the type of interface required without affecting the rest
of the UVC.

As mentioned previously, for the hardware acceleration mode, models that reside in the HVL partition
operate at the transaction level, while those that reside in the HDL partition execute at the signal level. One
consequence of configuring the UVC to use hardware acceleration is that the acceleratable collector and
driver components must incorporate transactors to convert signal-level activity to transactions, and vice
versa.

Acceleratable Transactors

Transactors are an abstraction bridge between the components that operate at the transaction level and the
components that operate at the signal level. For hardware acceleration, transactors extend this capability by
bridging between transaction-based components being executed by a software simulator and signal-based
components being executed by a hardware accelerator as shown in Figure 5-4 on page 200.

DUT Interface

Agent

Monitor Sequencer

DriverCollector

200 Advanced Verification Topics

Developing Acceleratable Universal Verification Components (UVCs)

Figure 5-4 Acceleratable Transactors

To bridge between the HVL partition and the HDL partition, the transactors have three main components:

• Proxy model

The proxy model is instantiated in the HVL partition and accesses the communication channel by way of
an Application Programming Interface (API).

• Bus Functional Model (BFM)

The BFM is instantiated in the HDL partition and also accesses the communication channel by way of an
API.

• Communication channel that connects between the Proxy and BFM

Each channel is uni-directional and this is reflected in the choice of interface used within each of the
partitions.

A simple transactor with one input and one output channel is shown in Figure 5-5.

Figure 5-5 Transactor Example with Input and Output Channels

To enable transactors to operate on different vendor’s hardware acceleration platforms, a standard
vendor-independent API was defined and standardized by Accellera for connecting any software simulator to
any hardware accelerator. The standard, known as the Standard Co-Emulation API: Modelling Interface

(SCE-MI), defines a multichannel communication interface.

Software Simulator

Transaction-Level Model

Hardware Accelerator

Transactors Signal-Level Model

Proxy Model

Bus Functional Model

(BFM)

In
p

u
t

ch
an

n
el

O
u

tp
u

t
ch

an
n

el

Advanced Verification Topics 201

UVM Acceleration Package Interfaces

SCE-MI initially defined a macro-based interface. But later, it added a simpler Direct Programming Interface
(DPI) and a more complex but feature-rich pipes-based interface. All of the above interfaces are described in
the Standard Co-Emulation API: Modelling Interface (SCE-MI) Reference Manual, Version 2.0, or later, and is
available from Accellera. The UVM Acceleration interface uses SCE-MI pipes communications channels.

SCE-MI pipes are unidirectional channels that allow transactions to be streamed from components in the
HVL partition to components in the HDL partition and vice versa. A C language API is available to
components residing in the HVL partition and a SystemVerilog API is available to components residing in
the HDL partition.

To simplify the use of SCE-MI in the development of acceleratable UVCs, a UVM Acceleration library,
uvm_accel, is provided in the Cadence UXE software release to hide the semantics of the SCE-MI C API
presented to models that reside in the HVL partition. The uvm_accel package provides a UVM-based API
that is native to the verification language being used. Most UVM verification environments are built using
SystemVerilog, e, or a combination of both, and the uvm_accel library supports both. The uvm_accel
package allows the proxy model part of a transactor to be written in SystemVerilog or e, whichever is the most
suitable language, which is often the same as the language used to model the rest of the verification
environment.

The BFM part of the transactor, implemented using the acceleratable subset of SystemVerilog and Verilog,
uses the SCE-MI SystemVerilog interfaces to access the SCE-MI pipes based channels. These interfaces
provide SystemVerilog tasks and functions that greatly simplifies the usage. More information about the
SCE-MI Pipes interfaces can be obtained from the Standard Co-Emulation API: Modeling Interface
(SCE-MI) Reference Manual from Accellera.

5.3 UVM Acceleration Package Interfaces

The UVM package provides two unidirectional interfaces, one to access input channels and the other to
access output channels. The terms input and output are defined in relation to the hardware accelerator with
input being into the hardware accelerator and output being out of the hardware accelerator.

For SystemVerilog, each interface is defined as a class that inherits from the
uvm_accel_pipe_proxy_base. For e, each interface is defined as a unit that inherits from the
uvm_accel_pipe_proxy_base unit.

202 Advanced Verification Topics

Developing Acceleratable Universal Verification Components (UVCs)

5.3.1 uvm_accel_pipe_proxy_base Task and Function
Definitions (SystemVerilog)

SystemVerilog uvm_accel_input_pipe_proxy

The SystemVerilog uvm_accel_input_pipe_proxy class definition is shown below:

class uvm_accel_input_pipe_proxy #(type T=uvm_object,

Task / Function Definition

extern function void

build_phase(phase);
Called during the environment build_phase phase. Gets
configuration parameters such as hdl_path and
autoflush and uses them to configure the proxy.

To improve performance, you should run with
pipe_proxies configured with autoflush disabled,
whenever possible.

For more information on autoflush, refer to the Standard
Co-Emulation API: Modeling Interface (SCE-MI)
Reference Manual.

extern function void

end_of_elaboration_phase(phase);
Called at the end of elaboration. hdl_path must be
configured before this function is called since port binding
occurs during this phase.

extern function void

set_pipe_name(string name);
Used to define the full hierarchical instance name of a pipe.
The pipe name must be defined before
end_of_elaboration_phase if it is to take effect. The
name is given as a string.

extern function string

get_pipe_name();
Returns the hierarchical instance name of the pipe that will
be, or has been bound.

extern function bit set_autoflush(bit

enable);
Sets the autoflush semantics of the pipe. An input of 1 turns
autoflush on for all subsequent messages, and an input of 0
turns it off for subsequent messages. This setting can be
made at anytime. The default is autoflush enabled (1).

extern function bit get_autoflush(); Returns the autoflush setting of the pipe.

extern function int unsigned

get_pipe_depth();
Returns the number of elements that the pipe holds.

extern function int unsigned

get_pipe_width();
Returns the number of bytes of each element.

extern function int unsigned

get_pipe_handle();
Returns the internal handle that is used by the proxy to
communicate with the actual pipe. This handle should not
be used directly. Each actual pipe will have a unique handle.

Advanced Verification Topics 203

uvm_accel_pipe_proxy_base Task and Function Definitions (SystemVerilog)

type S=uvm_accel_object_serializer#(T)) // Parameterizable

// serializer type

extends uvm_accel_pipe_proxy_base;

uvm_put_imp #(T,uvm_accel_input_pipe_proxy#(T)) put_export; // TLM port

// binding

uvm_analysis_port #(T) put_ap; // Analysis port

extern function new(string name, uvm_component parent); // Constructor

extern task put(T t); // Blocking put

extern function bit try_put (T t); // Non-blocking put

extern function bit can_put(); // Non-blocking can

// put test

endclass

Each input pipe proxy instance can be customized to accept different types of data item and use different
serialization schemes. Customization is achieved via the parameters uvm_object and
uvm_accel_object_serializer. Each data item is defined as a class in SystemVerilog which inherits
from uvm_sequence_item. A data item typically contains data members that may or may not be
randomized, UVM utility fields to enable or disable UVM automation for each of the data members, and
constraints to constrain any data members that are to be randomized. In addition, serialization and
de-serialization methods may also be provided for specific fields of the data item where the default
serializer/de-serializer is not sufficient.

Table 5-1 SystemVerilog uvm_accel_input_pipe_proxy Task and Function
Definitions

SystemVerilog uvm_accel_output_pipe_proxy

The SystemVerilog uvm_accel_output_pipe_proxy class definition is shown below:

class uvm_accel_output_pipe_proxy#(type T=uvm_object,

type S=uvm_accel_object_serializer#(T)) // Parameterizable

// deserializer type

extends uvm_accel_pipe_proxy_base;

uvm_get_imp#(T,uvm_accel_output_pipe_proxy#(T)) get_export; // TLM port

binding

uvm_analysis_port#(T) get_ap; // Analysis port

extern function new(string name, uvm_component parent);// Constructor

extern task get(inout T t); // Blocking get

extern function bit try_get (T t); // Non-blocking get

extern function bit can_get(); // Non-blocking can get

endclass

Task / Function Definition

extern task put(T t); Sends a user-defined data item of type T.

extern function bit try_put (T t); Sends a user-defined data item of type T, if possible.

extern function bit can_put(); Returns 1 if the component is ready to accept the data item;
0 otherwise.

204 Advanced Verification Topics

Developing Acceleratable Universal Verification Components (UVCs)

Each output pipe proxy can be customized to accept different types of data item and use different
de-serialization schemes. Customization is achieved by way of the parameters uvm_object and
uvm_accel_object_serializer.

Table 5-2 SystemVerilog uvm_accel_output_pipe_proxy Task and Function
Definitions

5.3.2 uvm_accel_pipe_proxy_base Task and Function
Definitions (e)

e uvm_accel_input_pipe_proxy

Table 5-3 e uvm_accel_input_pipe_proxy Unit Definition

template unit uvm_accel_input_pipe_proxy of (<type>) like

uvm_accel_pipe_proxy_base {

!value : <type>;

m_in : interface_imp of tlm_put of <type> is instance; //TLM Interface

put(value: <type>) //Blocking put

try_put(value: <type>) : bool //Non-blocking put

can_put(): bool //Non-blocking can

//put test

};

Each input pipe proxy instance can accept different types of data items. Each data item is defined as a unit in
e, and is like any_sequence_item. A data item typically contains data members that may or may not be
randomized, and includes constraints to constrain data members that are to be randomized. In addition,

Task / Function Definition

extern task get(inout T t); Provides a new data item of type T.

extern function bit try_get (T t); Provides a new data item of type T, if possible

extern function bit can_get(); Returns 1 if a new data item can be provided immediately
upon request, 0 otherwise.

Task / Function Definition

get_pipe_full_path() : string Returns the hierarchical instance name of the pipe that will be, or has
been bound.

set_autoflush(enable : bool) Sets the autoflush semantics of the pipe. An input of 1 enables
autoflush for all subsequent messages, and an input of 0 disables it
for subsequent messages. This setting can be made at anytime. The
default is autoflush enabled (1).

get_pipe_autoflush() : bool Returns the autoflush setting of the pipe.

get_pipe_depth() : uint Returns the number of elements that the pipe holds.

Advanced Verification Topics 205

SCE-MI Hardware Interface

pack and unpack methods may also be provided for specific fields of the data item where the default
packer or unpacker is not sufficient.

Table 5-4 e uvm_accel_input_pipe_proxy Task and Function Definitions

e uvm_accel_output_pipe_proxy

The e uvm_accel_output_pipe_proxy unit definition is shown below:

template unit uvm_accel_output_pipe_proxy of (<type>) like

uvm_accel_pipe_proxy_base {

!m_value : <type>;

m_out : interface_imp of tlm_get of <type> is instance; // TLM Interface

get(value: *<type>) // Blocking get

try_get(value: *<type>): bool // Non-blocking

// get

can_get(): bool // Non-blocking

// can get

};

Each output pipe proxy can be customized to accept different types of data item.

Table 5-5 e uvm_accel_output_pipe_proxy Task and Function Definitions

5.4 SCE-MI Hardware Interface

The SCE-MI API used by the BFMs that exist in the HDL partition are defined in the Standard
Co-Emulation API: Modeling Interface (SCE-MI) Reference Manual. The HDL side API for input and
output interfaces are given here for reference. For complete details, refer to the SCE-MI Reference Manual.

Task / Function Definition

put(value: <T>) Sends a user-defined data item of type T.

try_put(value: <T>) : bool Sends a user-defined data item of type T, if possible.

can_put(): bool Returns TRUE if the component is ready to accept the data item;
FALSE otherwise.

Task / Function Definition

get(value: *<T>) Sends a user-defined data item of type T.

try_get(value: *<T>): bool Sends a user-defined data item of type T, if possible

can_get(): bool Returns 1 if a new data item can be provided immediately upon
request, 0 otherwise.

206 Advanced Verification Topics

Developing Acceleratable Universal Verification Components (UVCs)

5.4.1 SCE-MI Input Pipe Interface

interface scemi_input_pipe();

parameter BYTES_PER_ELEMENT = 1;

parameter PAYLOAD_MAX_ELEMENTS = 1;

parameter BUFFER_MAX_ELEMENTS = <vendor specified>;

localparam PAYLOAD_MAX_BITS = PAYLOAD_MAX_ELEMENTS * BYTES_PER_ELEMENT * 8;

task receive(

input int num_elements, // # elements to be read

output int num_elements_valid, // # elements that are valid

output bit [PAYLOAD_MAX_BITS-1:0] data, // data

output bit eom); // end-of-message marker flag

<implementation goes here>

endtask

function int try_receive(// return: #requested elements

// that are actually received

input int byte_offset, // byte_offset into data

input int num_elements, // # elements to be read

output bit [PAYLOAD_MAX_BITS-1:0] data, // data

output bit eom); // end-of-message marker flag

<implementation goes here>

endfunction

function int can_receive(); // return: #elements that can

// be received

<implementation goes here>

endfunction

modport receive_if(import receive, try_receive, can_receive);

endinterface

5.4.2 SCE-MI Output Pipe Interface

interface scemi_output_pipe();

parameter BYTES_PER_ELEMENT = 1;

parameter PAYLOAD_MAX_ELEMENTS = 1;

parameter BUFFER_MAX_ELEMENTS = <vendor specified>;

localparam PAYLOAD_MAX_BITS = PAYLOAD_MAX_ELEMENTS * BYTES_PER_ELEMENT * 8;

task send(

input int num_elements, // input: #elements to be

written

input bit [PAYLOAD_MAX_BITS-1:0] data, // input: data

input bit eom); // input: end-of-message marker flag

<implementation goes here>

endtask

task flush;

Advanced Verification Topics 207

Building Acceleratable UVCs in SystemVerilog

<implementation goes here>

endtask

function int try_send(// return: #requested elements

// that are actually sent

input int byte_offset, // input: byte_offset into

// data, below

input int num_elements, // input: #elements to be sent

input bit [PAYLOAD_MAX_BITS-1:0] data, // input: data

input bit eom); // input: end-of-message marker

// flag

<implementation goes here>

endfunction

function int can_send(); // return: #elements that can be sent

<implementation goes here>

endfunction

modport send_if(import send, flush, try_send, can_send);

endinterface

5.5 Building Acceleratable UVCs in SystemVerilog

5.5.1 Data Items

Data items are transactions, which are implemented as class objects that are inherited from
uvm_sequence_item, that itself inherits from uvm_transaction. A data item contains data members,
UVM utility fields to enable or disable UVM automation for each of the data members, and constraints to
constrain any data members that are to be randomized. In addition, you may provide your own serialization
and de-serialization methods. The code snippet below, taken from a simple SystemVerilog example, yamp,
shows the class definition of a data item called yamp_transfer along with its data members.

typedef enum bit { READ, WRITE } direction_t; // Enumerated type used to

// define memory access

// direction

class yamp_transfer extends uvm_sequence_item; // yamp_transfer class

// inherited from

//‘uvm_sequence_item’

// class

rand direction_t direction; // Memory access direction

//(READ OR WRITE)

rand bit [2:0] wait_states; // Used by the Driver to

// insert wait states

rand bit [3:0] transfer_delay; // Used by the Driver to

// insert a transfer delay

rand bit [7:0] size; // Size of data transfer

rand bit [15:0] addr; // Start address of memory

// access

208 Advanced Verification Topics

Developing Acceleratable Universal Verification Components (UVCs)

rand bit [15:0] data []; // Data to be read or

// written to memory

SystemVerilog data members can be randomized as shown by preceding their declaration with the keyword
rand. Data items can contain statically sized data members as well as dynamically sized data members such
as data[] shown in the example.

Data items that contain randomly assigned data members require constraints to constrain the range of values
they will be assigned. Constraints can be defined within the class definition as shown below or in a separate
constraints file.

constraint default_wr_size_c {(direction == WRITE) -> data.size() == size;

(direction == READ) -> data.size() == 0; }

constraint default_size_c { size inside { [1:10] }; }

constraint default_delay_c { transfer_delay inside {[1:5]};}

uvm_object_utils macros are used to enable common operations declared in uvm_object such as copy,
compare, and print as shown below.

`uvm_object_utils_begin(yamp_transfer) // Start of UVM utility

// macro definitions

`uvm_field_enum(direction_t, direction, UVM_ALL_ON)

`uvm_field_int(wait_states, UVM_ALL_ON)

`uvm_field_int(transfer_delay, UVM_ALL_ON)

`uvm_field_int(size, UVM_ALL_ON)

`uvm_field_int(addr, UVM_ALL_ON + uvm_HEX)

`uvm_field_array_int(data, UVM_ALL_ON + UVM_HEX + UVM_NOPACK)

`uvm_object_utils_end // End of UVM utility

// macro definitions

In order to transfer a data item from the proxy in the HVL partition to the BFM in the HDL partition, the data
members must be packed, or serialized, into a vector of bits as shown below.

Figure 5-6 Packed Implementation of Data Item yamp_transfer

UVM provides packing capabilities which may or may not be suitable for the data item to be transferred.
When data members are statically sized the standard packer is usually sufficient but alternative packing
schemes may be required for dynamically sized data members if they have specific requirements. If a field is
to be packed using a customized serializer the attribute UVM_NOPACK should be set using the
`uvm_object_util_* macro. If the dynamic members do not have any specific requirements then the
standard UVM packer can be used for static and dynamic data members. An example of specific pack
function required by the yamp example is shown below.

function void do_pack (uvm_packer packer);

foreach(data[i]) packer.pack_field_int(data[i],16);

endfunction

Data items received by the proxy in the HVL partition, from the BFM in the HDL partition, must be
unpacked back into the data item class structure. It is the unpack operation that usually dictates whether

dir wait_states addrsizetransfer_delay data []

Advanced Verification Topics 209

Acceleratable Driver (SystemVerilog)

custom pack and unpack functions are required. The reverse operation employed by the packer must be used
by the unpacker. Therefore, if a customized packer was defined then a customized unpacker or deserializer
must also be defined. The code snippet below shows the custom unpacker used by the yamp example.

function void do_unpack (uvm_packer packer);

data = new [size]; //size was automatically unpacked

foreach(data[i]) data[i] = packer.unpack_field_int(16);

endfunction

5.5.2 Acceleratable Driver (SystemVerilog)

The driver is responsible for taking data items from the sequencer and driving them onto the DUT interface.
The DUT can be modeled at multiple levels of abstraction. So, the driver must be able to accommodate each
of the interfaces presented by each type of model. This not only affects the type of physical interface used it
also affects the functionality of the driver itself. To be able to reconfigure the driver to operate at different
levels of abstraction, an enumerated type uvm_abstraction_level_enum is used. This enumerated type is
defined in the uvm_accel package provided by Cadence.

In SystemVerilog, the enumerated type is defined as follows:

typedef enum bit [1:0] {UVM_SIGNAL, UVM_TLM, UVM_ACCEL}

uvm_abstraction_level_enum

The values defined by this type configure the UVC to operate in pure simulation at the signal level
(UVM_SIGNAL) or transaction level (UVM_TLM) or use hardware acceleration (UVM_ACCEL).

When configured for hardware acceleration an acceleratable transactor is used to bridge the gap between the
components that operate at the transaction level, which are executed by the software simulator, and the
components that operate at the signal level, which are executed by the hardware accelerator. This same
acceleratable transactor can also be used for signal based simulation. However, UVCs that have been created
for simulation typically use a virtual interface to connect the driver to the DUT and implement the BFM
using behavioral constructs. This implementation can continue to be used for simulation to allow a gradual
migration to hardware acceleration if required. When using the behavioral BFM the
uvm_abstraction_level_enum should be set to UVM_SIGNAL. If the UVC is to be used to verify abstract
SystemC TLM models, the uvm_abstraction_level_enum should be set to UVM_TLM. The behavior of the
driver along with the interface it uses to connect to this model should be customized to suit this type of
model.

The following code shows the SystemVerilog code that defines the part of the driver that resides in the HVL
partition for the yamp example.

class yamp_master_driver extends uvm_driver #(yamp_transfer);

// Virtual interface used to drive HDL signals

virtual interface yamp_if vif;

// UVM abstraction level

protected uvm_abstraction_level_enum abstraction_level = UVM_SIGNAL;

// SCE-MI input pipe interface

protected uvm_accel_input_pipe_proxy#(yamp_transfer) m_ip;

// SCE-MI output pipe interface

210 Advanced Verification Topics

Developing Acceleratable Universal Verification Components (UVCs)

protected uvm_accel_output_pipe_proxy#(yamp_transfer) m_op;

// UVM build function

extern virtual function void build_phase(uvm_phase phase);

// UVM run task

extern virtual task run_phase(uvm_phase phase);

// Task used to drive signals in UVM_SIGNAL mode

extern virtual protected task get_and_drive();

// Task used to drive signals in UVM_ACCEL mode

extern virtual protected task get_and_drive_accel();

endclass : yamp_master_driver

The yamp_master_driver inherits from the uvm_driver class and operates on a data item of type
yamp_transfer. This example shows a virtual interface, vif, which is used for signal level simulation, and
two uvm_accel pipe proxy interfaces, m_ip and m_op that are used for hardware acceleration.

Two uvm_accel pipe proxy interfaces are required for the yamp example since bidirectional communication
is required. Each uvm_accel pipe proxy interface is unidirectional; therefore, the need for one input
interface and one output interface. For most protocols, bidirectional communication is required so it is
typical for two or more interfaces to be instantiated. Each uvm pipe proxy interface takes a data item type
as a parameter.

Standard UVM tasks and functions must be defined for each driver. It is recommended that different tasks for
each level of abstraction are defined rather than implementing the driver functionality in one task for all the
supported levels of abstraction. In the yamp example, the get_and_drive() task implements the
signal-level simulation driver functionality and the get_and_drive_accel() task implements the
hardware-acceleratable driver functionality. Separating the code into distinct task makes the code easier to
understand and debug.

5.5.2.1 build_phase(uvm_phase phase) Function

Each UVM component that inherits from the uvm_component class should provide an implementation for
a build_phase function. Each build_phase function is called during the UVM build_phase simulation
phase to construct the environment hierarchy. In the example shown below, the abstraction_level is
used to determine the type of interface required by the driver.

function void yamp_master_driver::build_phase(uvm_phase phase);

super.build_phase(phase);

if (abstraction_level == UVM_ACCEL)

begin

m_ip = new("m_ip", this); // Construct an input port

m_op = new("m_op", this); // Construct an output port

uvm_config_db#(string)::set(this,"m_ip", "hdl_path", "inbox0");

// hdl_path used for input port binding

uvm_config_db#(string)::set(this,"m_op", "hdl_path", "outbox0");

// hdl_path used for output port binding

end

endfunction : build_phase

Advanced Verification Topics 211

Acceleratable Driver (SystemVerilog)

For hardware acceleration, the abstraction_level must be set to UVM_ACCEL to inform the driver to
build and configure a transaction based interface. For the yamp example, two ports are constructed: an input
port called m_ip and an output port called m_op. These ports must be bound to valid channels before they
can be used and this is achieved by defining a string called hdl_path for each port.

Port binding is configured by calling the UVM uvm_config_db#(string)::set function for each port
defined in the HVL partition. The uvm_config_db#(string)::set function causes configuration
settings to be created and placed in the uvm_config database. The uvm_config_db#(string)::set
function requires the name of the port instance in the HVL partition, the name of the string variable to be
configured (which is hdl_path for port binding), and the full hierarchical path from the top level of the
HDL partition down to the appropriate port instance in the HDL design hierarchy. In the example given, the
full hierarchical path is defined by concatenating the m_hdl_path variable with the specific port instance
name. The m_hdl_path variable is set by the test environment and is the hierarchical path from the top level
of the HDL partition down to the BFM instance. The agent then appends the specific port instance name to
this path.

If the HDL port, defined by hdl_path, is compatible with the HVL port, it will be bound during the
end_of_elaboration_phase phase; if not, an error will occur. Therefore, the hdl_path for each port
must be defined before the end_of_elaboration_phase phase; it is common to do this during the
build_phase phase as shown.

5.5.2.2 run_phase(uvm_phase phase) Task

Each UVM component that inherits from the uvm_component class, should provide an implementation for
a run_phase task. Each run_phase task is called during the UVM run_phase simulation phase and
defines the behavior of the driver. The required functionality of the driver will differ depending on the level
of abstraction used to implement the DUT. Therefore, the abstraction_level is tested and used to alter
the driver’s behavior as shown below.

task yamp_master_driver::run_phase(uvm_phase phase);

if (abstraction_level == UVM_SIGNAL) // Signal level simulation

fork

get_and_drive(); // Drive signal level DUT interface

join

else if (abstraction_level == UVM_ACCEL) // Hardware acceleration fork

fork

get_and_drive_accel(); // Drive SCE-MI transaction level

// interface

join

endtask

If the abstraction_level is set to UVM_SIGNAL, and a signal-level behavioral BFM has been created for
simulation, which is typical of legacy UVCs, a get_and_drive() task should be called. This task
implements the functionality required to drive this type of interface.

If the abstraction_level is set to UVM_ACCEL, a get_and_drive_accel() task should be called.
Different tasks are defined for simulation and acceleratable drivers to allow a legacy behavioral
implementation to be used, and coexist with an acceleratable implementation. Acceleratable drivers can be

212 Advanced Verification Topics

Developing Acceleratable Universal Verification Components (UVCs)

used with hardware acceleration or simulation. Therefore, the same task could be called, irrespective of
whether the abstraction_level is set to UVM_SIGNAL or UVM_ACCEL. This is configured in the
run_phase task.

5.5.2.3 get_and_drive() Task

The get_and_drive() task requests data items from the sequencer, and when appropriate drives the virtual
DUT interface signals. It implements the signal-level protocol required by the DUT and drives the DUT
signals directly, as shown in the code snippet from the yamp example below.

task yamp_master_driver::get_and_drive();

if(vif.sig_reset!==0) @(negedge vif.sig_reset);

forever begin

@(posedge vif.clk);

seq_item_port.get_next_item(req); // Get new item from

// the sequencer

if (transfer.direction == WRITE) begin // Drive the virtual

// virtual interface

// signals

vif.rd <= 0;

for (int i=0;i < transfer.size; i++) begin

repeat (transfer.wait_states) @(posedge vif.clk);

vif.we <= 1;

vif.di <= transfer.data[i];

@(posedge vif.clk);

vif.addr <= vif.addr + 1;

vif.we <= 0;

<rest of implementation>

seq_item_port.item_done(); // Communicate item done

// to the sequencer

endtask : get_and_drive

5.5.2.4 get_and_drive_accel() Task

The get_and_drive_accel() task uses the uvm_accel interfaces to send and receive data items as
transactions from the HVL partition into the HDL partition where a hardware BFM drives the DUT signals.
The get_and_drive_accel() task does not implement any signal-level protocol functionality it operates
purely at the transaction level. The HDL BFM is implemented as a separate module and is instantiated in the
HDL hierarchy partition which will be described in the next section.

The uvm_accel ports use standard transaction-level modeling (TLM) semantics to send and receive
transactions by way of SCE-MI communication channels. The code snippet below shows the blocking put
and blocking get tasks being used to send and receive data items.

task yamp_master_driver::get_and_drive_accel();

forever begin

seq_item_port.get_next_item(req); // Get new item from the sequencer

m_ip.put(req); // Drive the item

if(req.direction == READ) begin

Advanced Verification Topics 213

Acceleratable Driver (SystemVerilog)

m_op.get(req);

seq_item_port.item_done(req);

end

else begin

//Communicate item done to the sequencer

seq_item_port.item_done();

end

<rest of implementation>

end

endtask

Once a data item has been taken from the sequencer, it can be put into an input channel using the blocking
put() function associated with the port that is bound to that channel. The blocking put() function blocks
until the transaction has been taken from the channel at the opposite end. This means that the
get_and_drive_accel() task does not need to implement any sort of wait before informing the
sequencer that the current sequence item has been done. This is simpler than in the non-accelerated case
where you must implement any code required to allow one sequence to be completed before the next one is
started.

5.5.2.5 Acceleratable Driver BFM (SystemVerilog)

The acceleratable driver BFM resides in the HDL partition and implements the signal level protocol
functionality required to drive the DUT. The acceleratable driver BFM contains SCE-MI pipes interfaces
which are bound to ports within the driver component that resides in the HVL partition. The
get_and_drive_accel() task passes transactions through a SCE-MI pipe to the driver BFM which must
extract the transaction and apply it to the DUT signal level interface.

The acceleratable driver BFM must be written in acceleratable SystemVerilog or Verilog for it to be
accelerated by a hardware accelerator. The driver code should be partitioned into separate files to reflect code
that is to be simulated and code that is to be accelerated. This simplifies the overall compilation process and
makes the code easier to maintain.

Note The Cadence UVM Acceleration package provides e and SystemVerilog interfaces to allow access to
the pipes on the HVL side. Therefore, the same acceleratable driver BFM can be used in both environments.

Each driver BFM must instantiate appropriate SCE-MI pipes ports to mirror those defined in the driver’s
proxy which exists in the HVL partition. If the ports at each end of the communication channel are not
compatible, they will not be bound and elaboration will fail. The code snippet below, taken from the yamp
example, shows a SCE-MI input pipe called inbox0() and a SCE-MI output pipe called outbox0().

module yamp_master_driver_bfm (

input wire clk,

output reg cmd,

output reg[7:0] len,

output reg we,

output reg ce,

output reg rd,

output reg[15:0] addr, di,

input wire[15:0] dout,

214 Advanced Verification Topics

Developing Acceleratable Universal Verification Components (UVCs)

input wire scemi_mode

); // SCE-MI input pipe instantiation

scemi_input_pipe #(2, 1) inbox0 (); // SCE-MI output pipe instantiation

scemi_output_pipe #(2, 1) outbox0 ();

<rest of implementation>

Both inbox0 and outbox0 have the parameters BYTES_PER_ELEMENT set to 2 and
PAYLOAD_MAX_ELEMENTS set to 1.

BYTES_PER_ELEMENT = 2 means that each message element received will contain two bytes.

PAYLOAD_MAX_ELEMENTS = 1 means that only one message element will be received at a time.

These two parameters define the width of the data that can be received by an input port or sent by an output
port. Each ports width is defined by the parameter PAYLOAD_MAX_BITS that is defined as shown in the
following formula:

PAYLOAD_MAX_BITS = PAYLOAD_MAX_ELEMENTS * BYTES_PER_ELEMENT * 8;

Therefore, the ports in the example above are capable of receiving or sending messages only 16-bits wide
during each transfer.

A UVC can contain different types of driver to suit the level of abstraction used to model the DUT. If a
simulation-based driver and an acceleratable driver have both been implemented, it is important to ensure
that only one driver drives the DUT at any one time. The abstraction_level_enum should be used to
define the value of scemi_mode. When the SCE-MI hardware acceleratable driver is to be used scemi_mode
should be set to 1; for all other scenarios, scemi_mode should be set to 0. This is usually defined at the top
level of the UVC. The code snippet below, taken from the yamp example, shows that the output we_r, ce_r,
and rd_r are tri-stated, unless scemi_mode has been set to 1.

// Output tri-state logic

always@(we_r or scemi_mode) we <= scemi_mode3we_r:1'bz;

always@(ce_r or scemi_mode) ce <= scemi_mode3ce_r:1'bz;

always@(rd_r or scemi_mode) rd <= scemi_mode3rd_r:1'bz;

<rest of implementation>

The SCE-MI pipes HDL API provides blocking and non-blocking tasks and functions. The code snippet
below, taken from the yamp example shows how the blocking receive() task is used.

always@(posedge clk) begin

if(scemi_mode) begin

inbox0.receive(1, num_recv, idata, eom);

{len_r, delc, ws, cmd_r} = idata;

<rest of implementation>

At the positive edge of the clock called clk, the receive() task associated with inbox0 is called with the
following arguments:

Num_elements = 1

Num_elements_valid = num_recv

Output_data = idata

EOM = eom

Advanced Verification Topics 215

Building Acceleratable UVCs in e

Num_elements defines how many elements are to be put into the variable idata when a transaction has been
received. This example deals with one message element at a time. A transaction can contain many message
elements, and the BFM designer needs to decide the most efficient implementation.

Num_elements_valid defines the number of received elements that are valid. This can be used by the BFM
to determine the elements to be used when multiple elements are received in one transfer. This is not relevant
in this example because only one element can be received at one time.

Output_data defines the variable in which received data will be written into. The width of this variable
should be defined by PAYLOAD_MAX_BITS as described above.

EOM defines whether the message element received is a single message element or a part of a continuous
stream of message elements. Using EOM, it is possible to send transactions that contain a variable number of
message elements during each transfer. When EOM is set to 1, the element received is the last element. When
EOM is set to 0, there are more elements available to read.

More information about the SCE-MI hardware API can be found in the Standard Co-Emulation API:
Modeling Interface (SCE-MI) Reference Manual.

5.6 Building Acceleratable UVCs in e

5.6.1 Data Items

Data items are transactions that are implemented as struct objects that derive from any_sequence_item. A
data item contains data members, constraints to constrain any data members that are to be randomized, and
methods for manipulating the data members or the struct itself. The code snippet below, taken from the e
yamp example, shows the struct definition of a data item called transfer_s along with its data
members.

struct transfer_s like any_sequence_item { // transfer_s struct

%direction : yamp_direction_t; // Memory access

// direction

// (READ OR WRITE)

%wait_states : uint (bits : 3); // Used by the driver

// to insert wait states

%delay_clocks : uint (bits : 4); // Used by the driver

// to insert a transfer

// delay

%size : uint (bits : 8); // Size of data transfer

%addr : yamp_addr_t; // Start address of

// memory access

%data : list of uint (bits : YAMP_DATA_WIDTH); // Data to be

// read or written to

// memory

Data items that contain randomly assigned data members require constraints to constrain the range of values
they will be assigned. Constraints can be defined within the struct definition as shown below or in a separate
constraints file.

216 Advanced Verification Topics

Developing Acceleratable Universal Verification Components (UVCs)

keep soft data.size() == size;

keep direction == WRITE => data.size() == size;

keep soft size > 0;

keep soft size < 10;

To transfer a data item from the proxy in the HVL partition to the BFM in the HDL partition, the data
members must be packed into a vector of bits as shown in Figure 5-7 below.

Figure 5-7 Packed Implementation of Data Item yamp_transfer

e provides built-in pack and unpack methods to create a list of bits that is a concatenation of the members
contained in the data item struct. The acceleratable driver must understand the packing scheme used in
order to extract each member from the data item received.

5.6.2 Acceleratable Driver (e)

The UVC BFM is responsible for taking data items from the sequencer and driving them onto the DUT
interface. The DUT can be modeled at multiple levels of abstraction. So, the BFM must be able to
accommodate each of the interfaces presented by each type of model. This not only affects the type of physical
interface used, it also affects the functionality of the BFM itself. To be able to reconfigure the BFM to operate
at different levels of abstraction, an enumerated type uvm_abstraction_level_t is used. This
enumerated type is defined in the uvm_accel package provided by Cadence.

In e, the enumerated type is defined as follows:

type uvm_abstraction_level_t : [UVM_SIGNAL, UVM_TLM, UVM_ACCEL]

(bits : 2);

The values defined by this type configure the UVC to operate at one of the following levels:

• Pure simulation at the signal level (UVM_SIGNAL)

• Pure simulation at the transaction level (UVM_TLM)

• Use hardware acceleration (UVM_ACCEL)

When configured for hardware acceleration, an acceleratable transactor is used to bridge the gap between the
components that operate at the transaction level and the signal level. Transaction-level components are
executed by the software simulator, and signal-level components are executed by the hardware accelerator.
The same acceleratable transactor can be used in a simulation-only environment as well as with hardware
acceleration. However, multi-purpose UVCs that are configured to operate in UVM_SIGNAL mode typically
implement the BFM in behavioral e code. This implementation can continue to be used for simulation to
allow a gradual migration to hardware acceleration, if required. When using the behavioral BFM, the
uvm_abstraction_level_t should be set to UVM_SIGNAL. If the UVC is to be used to verify abstract
SystemC TLM models, the uvm_abstraction_level_t should be set to UVM_TLM. The behavior of the
driver along with the interface that it uses to connect to this model, should be customized to suit this type of
model.

direction wait_states addrsizedelay_clocks Data

Advanced Verification Topics 217

Acceleratable Driver (e)

One of the main features of e is that it provides aspect orientation. This means that objects can be extended to
accommodate new functionality or manipulate existing functionality. For UVM Acceleration it is common
for the different abstraction levels to be implemented by extending existing units.

The following code shows the e code which defines the part of the driver that resides in the HVL partition for
the yamp example.

extend UVM_ACCEL master_bfm {

keep hdl_path() == "xi0"; // HDL path

m_ip : uvm_accel_input_pipe_proxy of transfer_s is instance; // Input

// Port

keep m_ip.hdl_path() == "inbox0";

m_op : uvm_accel_output_pipe_proxy of transfer_s is instance; // Output

// Port

keep m_op.hdl_path() == "outbox0";

m_in : interface_port of tlm_put of transfer_s is instance; // Input

// Port

m_out : interface_port of tlm_get of transfer_s is instance; // Output

// Port

connect_ports() is also{ // Port

// Binding

m_in.connect(m_ip.m_in);

m_out.connect(m_op.m_out);

};

drive_transfer (cur_transfer : transfer_s) // Drive

// transfer

// method

};

The master_bfm extends the generic BFM and is extended further when the abstraction level is set to
UVM_ACCEL. This example shows two uvm_accel pipe proxy interfaces, m_ip and m_op that are used for
hardware acceleration.

Two uvm_accel pipe proxy interfaces are required for the yamp example since bidirectional communication
is required. Each uvm_accel pipe proxy interface is unidirectional; hence, the need for one input interface
and one output interface. For most protocols, bidirectional communication is required. So, it is typical for two
or more interfaces to be instantiated. Each uvm_accel pipe proxy interface takes a data item type as a
parameter.

Standard UVM methods must be defined for each driver. These methods are customized using extensions
depending on the abstraction level. In the yamp example the drive_transfer() method implements the
driver functionality. Separating the code into distinct abstraction levels makes the code easier to understand
and debug.

5.6.2.1 drive_transfer Method

When the master_bfm is extended to operate in UVM_ACCEL mode, acceleratable interfaces are used to send
and receive data items as transactions from the HVL partition into the HDL partition where a HDL BFM
drives the DUT signals. The drive_transfer() method does not implement any signal level protocol

218 Advanced Verification Topics

Developing Acceleratable Universal Verification Components (UVCs)

functionality; it operates purely at the transaction level in this mode. The HDL BFM is implemented as a
separate module and is instantiated in the HDL partition that will be described in the next section.

The uvm_accel ports use standard transaction-level modeling (TLM) semantics to send and receive
transactions via SCE-MI communication channels. The blocking put() and blocking get() functions are
shown in the code snippet from the e yamp example below.

drive_transfer (cur_transfer : transfer_s) @p_sys_smp.clk is only {

cur_transfer.start_transfer(); // Get item from

// sequencer

if (cur_transfer.direction == WRITE) {

m_in$.put(cur_transfer); // Drive write

// transaction

}

else if(cur_transfer.direction == READ) {

var ref_data : list of uint (bits : YAMP_DATA_WIDTH) =

cur_transfer.get_data().copy();

cur_transfer.data.resize(0); // reset the

// data

m_in$.put(cur_transfer); // Drive read

// transaction

m_out$.get(cur_transfer); // Get read data

};

cur_transfer.end_transfer(); // End current

// sequence

};

Once a data item has been taken from the sequencer it can be put into an input channel using the blocking
put() function associated with the port that is bound to that channel. The blocking put() function blocks
until the transaction has been taken from the channel at the opposite end. This means that the
drive_transfer() method does not need to implement any sort of wait before informing the sequencer
that the current sequence item has been done. This is simpler than in the non-accelerated case where you
must implement any code required to allow one sequence to be completed before the next one is started.

5.6.2.2 Acceleratable Driver BFM (e)

The acceleratable driver BFM resides in the HDL partition and implements the signal level protocol
functionality required to drive the DUT. The acceleratable driver BFM contains SCE-MI pipes interfaces
which are bound to ports within the driver component which resides in the HVL partition. The
drive_transfer() method passes transactions through a SCE-MI pipe to the driver BFM that must
extract the transaction and apply it to the DUT signal level interface.

The acceleratable driver BFM must be written in acceleratable SystemVerilog or Verilog in order for it to be
accelerated by a hardware accelerator. The driver code should be partitioned into separate files to distinguish
between the code that is to be simulated and the code that is to be accelerated. This simplifies the overall
compilation process and makes the code easier to maintain.

The UVM Acceleration package provides e and SystemVerilog interfaces to allow access to the pipes on the
HVL side. The same acceleratable driver BFM can be used in both environments.

Advanced Verification Topics 219

Collector and Monitor

For more information about the acceleratable driver BFM, see Section 5.5.2.5, “Acceleratable Driver BFM
(SystemVerilog),” on page 213.

5.7 Collector and Monitor

The collector and monitor components have a similar implementation to the driver and sequencer
components described in the previous sections, except that the collector and monitor observe and track
activity on the DUT interface rather than drive it.

The collector component is responsible for making the physical connection to the DUT and should use
abstraction_level to determine the kind of interface that should be built during the UVM
build_phase simulation phase in a similar fashion as previously described for the driver.

The main difference between a collector and a driver is that a collector is a passive component. It does not
drive values onto the DUT interface. Therefore, it does not need to be impacted by the tri-stating of any of the
signals. Apart from this, a collector should be architected and partitioned in a similar fashion to a driver.

5.8 Summary

Simulation performance can slow down to unacceptable levels when scaling the verification run to the chip or
system level. Yet, the demand keeps rising to run such simulations to establish a higher level of confidence in
the quality of the product being verified. The acceleratable Universal Verification Methodology (UVM)
allows portions of a standard UVM environment to be accelerated using a hardware accelerator. In fact, the
methodology does not restrict its usage to hardware acceleration alone. UVM acceleration is truly an
extension of the standard simulation-only UVM, and is fully backwards compatible with it. This means that
Universal Verification Components (UVCs) architected to be acceleratable can be used in either a
simulation-only environment or a hardware-accelerated environment.

This chapter shows how UVM users can build acceleratable UVCs in either SystemVerilog or e. It describes
how the UVC agent can be architected to operate in simulation as well as hardware acceleration. The
underlying technology is compliant with the Accellera SCE-MI (Standard Co-Emulation API: Modeling
Interface) standard providing additional vendor neutrality to the UVM community. In addition, the
methodology is compliant with advanced verification techniques such as metric-driven verification, allowing
the user community to further build additional verification intelligence into their verification arsenal.

