Open side-bar Menu
 The Breker Trekker

Posts Tagged ‘uvm’

Automatically Generating Interacting, Self-Checking Test Cases for 144 CPU Cores

Wednesday, February 24th, 2016

We hope that the title of this blog post piqued your interest, because we don’t believe that we’ve seen anyone anywhere claiming to do automated multi-SoC verification at this level. Two weeks ago, we previewed next week’s Design and Verification Conference and Exhibition (DVCon) in San Jose. We highlighted one particular talk being co-presented by Breker and Cavium on “Using Portable Stimulus to Verify Cache Coherency in a Many-Core SoC” in the 9:00-10:30 a.m. session on Tuesday, March 1.

We teased you with the statement that this talk will describe “generating test cases for a multi-SoC configuration with well over 100 cores” and it’s time to tell you a bit more now that we have issued a press release on our project with Cavium. Of course, we need to reserve some of the details for the paper in the DVCon proceedings and the talk itself so that new material is being presented at the conference. We heartily encourage you at attend the show and hear for yourself.

(more…)

Why Is Cache Coherency So Hard to Verify?

Friday, February 19th, 2016

In last week’s post, we provided a preview of the program at the annual Design and Verification Conference and Exhibition (DVCon) in San Jose, coming up in ten days. We mentioned some of the interesting talks and other activities there, and focused in particular on “Using Portable Stimulus to Verify Cache Coherency in a Many-Core SoC” on Tuesday morning. The paper for this session was co-authored by Breker and Cavium, and both companies will present together at DVCon.

The paper and presentation describe the use of our Cache Coherency TrekApp and TrekSoC-Si to automatically generate self-checking, portable test cases for more than 100 CPU cores in a multi-SoC configuration in the Cavium bring-up lab. To set the stage for this story, today we’d like to revisit some of the reasons why cache coherency is so hard to verify and why an automated approach is the best solution.

(more…)

A Preview of the Upcoming DVCon in San Jose

Wednesday, February 10th, 2016

Regular readers of The Breker Trekker know that we like to preview, review, and dissect technical conferences and trade shows that are of interest to verification engineers. Perhaps the conference we’ve covered the most has been the annual Design and Verification Conference and Exhibition (DVCon) in San Jose. As far as we know, this is the biggest event anywhere focused on digital and system design and verification, a nice complement to the analog-ish DesignCon.

As a matter of fact, DVCon has become so successful that there are now regional conferences in India and Europe in addition to the U.S. show. We’ve strongly supported DVCon India, including serving for all three years on the Promotions Committee, and have participated in DVCon Europe as well. But those are a bit in the future; DVCon (U.S.) 2016 is coming up in a just a few weeks. The program is online now, so we thought we’d review it and suggest some sessions of possible interest.

(more…)

Expanding Our Scope to Multi-SoC System Verification

Wednesday, February 3rd, 2016

For more than four years now, Breker has branded itself as “The SoC Verification Company” and many people acknowledge our expertise in this domain. As we have discussed before on The Breker Trekker, our initial products focused on generating purely transactional tests for a simulation testbench, usually compliant with the Accellera Universal Verification Methodology (UVM) standard. When we extended our products to generate C code that runs on the embedded processors found within SoCs, we delivered on our “tagline” promise.

Since our early focus on simulating an SoC, we have expanded our technology and our product line to generate C test cases that run on embedded processors in emulation, FPGA prototypes, and actual silicon in the bring-up lab. In talking about what we do, we struggle to choose between “SoC” and “system” since for many of our customers the terms are synonymous. But we also have users verifying multi-SoC systems, and today we’d like to address that topic.

(more…)

Revisiting System / Scenario / Use-Case Coverage

Wednesday, January 6th, 2016

It’s been more than a year since we presented the Breker view of system coverage in detail, so it’s time to revisit the topic. We first defined the notion of system coverage as measuring which realistic, system-level application scenarios have been exercised using the existing test cases. We then demonstrated how our graph-based scenario models are ideally suited to capture system coverage metrics and fine-tune them using graph constraints if needed.

More recently, we noted that the term “use cases” has become more widespread and introduced the example of a digital camera SoC to show the types of use cases that should be exercised. The measurement for this exercise is also system coverage, so the bottom line is that all these terms are really talking about the same thing. Using a regular expression, we might say:

[application|realistic] (scenario|use-case) coverage = system coverage

(more…)

Top 5 Latest Holiday Gifts for the Verification Engineer

Wednesday, December 30th, 2015

It’s becoming somewhat of a tradition here on The Breker Trekker blog to close each year with a list of gifts available from us to verification engineers. We started the series two years ago with an initial list focusing on our core benefits of automatic test case generation, system coverage, and reuse both vertically (IP to system) and horizontally (simulation to silicon). Last year’s post offered five more gifts reflecting additional products and new features added to our overall solution:

#5: Easier sequence specification in UVM testbenches.
#4: Faster coverage closure in UVM testbenches.
#3: Integration of system coverage with other coverage metrics.
#2: Debug of automatic test cases using standard tools.
#1: A fully automated solution for cache coherency verification.

Every one of the ten gifts from 2013 and 2014 is still available today for our customers. In addition, we have continued to evolve our Trek family of products and to deploy it on ever more challenging SoC verification projects. Without further ado, here is our all-new list of holiday gifts for the verification engineer in 2015:

(more…)

Mystic Secrets of the Graph – Part Three

Thursday, December 10th, 2015

The past two weeks, we’ve been having a bit of fun playing alchemist and letting readers in on some of the deep, dark secrets of graph-based verification technology. This week, we conclude the series by showing some additional capabilities for our scenario models that are easy to control and view in a graph visualization. Our point is, of course, that graphs are a natural way to represent data flow and verification intent with no advanced degrees from MIT, IIT, or Hogwarts required.

As a quick reminder, graph-based scenario models begin with the end in mind and show all possible paths to create each possible outcome for the design. They look much like a reversed data-flow diagram, with outcomes on the left and inputs on the right. Breker’s Trek family can traverse the graph from left to right, randomizing selections to automatically generate test cases tailored to run in any target platform. Today, we continue using our example of a scenario model to verify that an automobile can move forward or stop.

(more…)

Mystic Secrets of the Graph – Part Two

Thursday, December 3rd, 2015

Last week, we began exploring some of the ancient, mysterious powers of graph-based scenario models to show their power for verification and ability to capture the verification space, many aspects of the verification plan, and critical coverage metrics. We’re just kidding about the first part; there’s nothing at all mystical or magical about graphs. In fact, this series of posts is intended to show the opposite and demonstrate with a easy-to-follow example the value of graphs.

As we noted in our last post, graph-based scenario models are simple in concept: they begin with the end in mind and show all possible paths to create each possible outcome for the design. They look much like a reversed data-flow diagram, with outcomes on the left and inputs on the right. An automated tool such as Breker’s Trek family can traverse the graph from left to right, randomizing selections to generate test cases that can run in any target platform.

(more…)

Mystic Secrets of the Graph – Part One

Tuesday, November 24th, 2015

If there’s one thing that Breker is known for, it’s the use of graphs for verification. From our earliest days, we harnessed the abstraction and expressive power of graph-based scenario models to capture the verification space, many aspects of the verification plan, and critical coverage metrics. As we reported in a post a few weeks ago, it looks certain that the industry will follow our lead and base the upcoming standard from Accellera‘s Portable Stimulus Working Group (PSWG) on a graph representation.

As discussions have proceeded both within the PSWG and informally with interested parties, it has become clear that “graph” may not mean the same thing to all people. Our view of graphs is precisely defined in a way that makes it easy for users to create them and feasible for our tools to generated complex, multiprocessor test cases from them. Most of the key concepts can be communicated easily by the use of a familiar example, which we will begin in today’s post and continue next week.

(more…)

Why C/C++ Is the Lingua Franca for Verification

Tuesday, November 17th, 2015

In last week’s post, we dissected the results for verification languages and methodologies from a recent survey by Mentor Graphics and Wilson Research Group. The main result was that SystemVerilog is growing in popularity on all fronts, but we observed that C/C++ has a significant presence. We also argued that the survey’s focus on simulation likely resulted in C/C++ being under-represented since these languages are widely used for verification with hardware platforms and for silicon validation in the lab.

We see C/C++ as the common link for many types of programming activities, and so widely known that many consider it the lingua franca of software. Just type “lingua franca C/C++” into your favorite search engine and scan the results for some interesting arguments and a few counter-arguments. To be fair, some observers consider C the lingua franca and downplay C++. We tend to group them together since object-oriented programming is now widespread and so moving from C to C++ should be a natural transition.

(more…)

CST Webinar Series



Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy