Open side-bar Menu
 The Breker Trekker

Posts Tagged ‘TrekSoC-Si’

Top 5 Latest Holiday Gifts for the Verification Engineer

Wednesday, December 30th, 2015

It’s becoming somewhat of a tradition here on The Breker Trekker blog to close each year with a list of gifts available from us to verification engineers. We started the series two years ago with an initial list focusing on our core benefits of automatic test case generation, system coverage, and reuse both vertically (IP to system) and horizontally (simulation to silicon). Last year’s post offered five more gifts reflecting additional products and new features added to our overall solution:

#5: Easier sequence specification in UVM testbenches.
#4: Faster coverage closure in UVM testbenches.
#3: Integration of system coverage with other coverage metrics.
#2: Debug of automatic test cases using standard tools.
#1: A fully automated solution for cache coherency verification.

Every one of the ten gifts from 2013 and 2014 is still available today for our customers. In addition, we have continued to evolve our Trek family of products and to deploy it on ever more challenging SoC verification projects. Without further ado, here is our all-new list of holiday gifts for the verification engineer in 2015:


There Is No Silver Bullet for Low-Power Verification

Wednesday, September 23rd, 2015

Anyone who reads The Breker Trekker from time to time needs no convincing from me that verification is a huge challenge for today’s complex chips. Breker’s Trek family of products exists, along with dozens if not hundreds of other EDA products, specifically to address functional verification. There are more technologies, tools, platforms, libraries, and methodologies than any one verification engineer can possibly learn and use on a day-to-day basis.

Why this diversity of solutions? As I first observed in Electronic Engineering Times nearly a decade ago, there is no silver bullet for verification. The problem is both so broad and so deep that no single tool or technology will ever satisfy the need. It takes a mix of solutions, guided by methodologies, to have any chance of first-silicon success. Low-power verification is an area where this is especially true, and unfortunately there is no silver bullet to be found here either.


What to Run on Day One in SoC Simulation

Thursday, February 5th, 2015

Two recent blog posts discussed what you should run when you first map your system-on-chip (SoC) design into an emulation platform and when you have your first fabricated chips from the foundry in your bring-up lab. We pointed out that trying to boot an operating system and run applications should not be the first step because production software is not designed to find and debug lingering hardware design errors. We recommended running the multi-threaded, multi-processor, self-verifying C test cases generated and optimized for hardware platforms by our TreSoC-Si product.

As you may know, TrekSoC uses the same graph-based scenario models as TrekSoC-Si, but optimizes the generated test cases for virtual prototypes, simulation, and simulation acceleration. In this post, we ask a similar question: what should you run in simulation when you first have the RTL for your SoC assembled and ready to be verified? Of course our answer will be the test cases generated by TrekSoC.  However, there are some advantages of simulation over hardware platforms that foster a more extensive methodology for verification with Breker’s products.


What to Run on Day One in the Bring-Up Lab

Tuesday, January 20th, 2015

Last week’s blog post raised the question of what you should run when you first map your system-on-chip (SoC) design into an emulation platform. We pointed out that trying to boot an operating system and applications immediately was a challenge because these are complex pieces of production software not designed to find lingering hardware design errors or to debug such errors easily even if detected. On many projects, the production software isn’t even available early enough to be used for design verification.

We strongly recommended running the multi-threaded, multi-processor, self-verifying C test cases generated by our Trek family of products. These “bare metal” test cases run on your SoC’s embedded processors at every stage of the project. TreSoC-Si specifically generates test cases tuned for emulation and FPGA prototype platforms. But what should you run when your fabricated chip first arrives back from the foundry? The answer is the same. TrekSoC-Si also generates test cases for silicon, ideal for use in your bring-up lab. Let’s explore this idea a bit more.


What to Run on Day One of Emulation

Wednesday, January 14th, 2015

Many of you are probably familiar with Lauro Rizzatti, who has written countless articles on the value of emulation for verifying system-on-chip (SoC) designs and been an occasional guest blogger here on The Breker Trekker. Lauro recently published an article in Electronic Engineering Times that really caught our attention. We could not possibly agree more with the title: “A Great Match: SoC Verification & Hardware Emulation” and, as we read through the article, were very pleased with the points he made.

Emulation involves mapping the RTL chip design into a platform that runs much like an actual chip, albeit considerably more slowly. The industry is not always consistent on its terminology, but generally if the platform is connected to a software simulation it’s being used as a simulation accelerator. In this case, the design’s inputs and outputs are connected to the simulation testbench much as they would be when running software simulation of the RTL. In emulation, there’s no simulator or testbench, and so the question becomes what to run on the design.


Blast from the Past: Verification in Silicon

Wednesday, January 7th, 2015

Late last year, we published a series of blog posts discussing how the world of large chip designs is moving toward multi-processor, cache-coherent SoCs. This trend is due to several sub-trends, including the addition of one or more processors, the growth in number of processors, the use of shared memory, and the addition of caches to improve memory performance. The result of this movement is clear: large chips are becoming more difficult to verify than ever.

Verification teams face challenges at every turn. It’s hard to run a complete SoC-level model in simulation, especially if the team wants to boot an operating system and run production applications. This may be feasible in emulation or FPGA prototyping platforms, but these cost a lot of money. What we’re starting to see is the truly stunning trend that some teams are taping out SoCs without ever having run the entire design together. This means that full-chip verification and debug isn’t happening until first silicon is in the lab. Let’s explore why this is happening.


Top 5 New Holiday Gifts for the Verification Engineer

Tuesday, December 30th, 2014

Last year, we wound up in December with a post on the “Top 5 Holiday Gifts for the Verification Engineer” and it proved very popular despite the holiday timing. To refresh your memory (and ours), here is the 2013 list:

#5: Relief from hand-writing verification test code.
#4: Relief from hand-writing validation diagnostics.
#3: Vertical verification IP reuse from block to system.
#2: Horizontal verification IP reuse from electronic system level (ESL) to silicon.
#1: Effortless system coverage reflecting end-use applications.

As you might expect, every one of these gifts is still available today for users of our Trek family of products. But over the last year we have added two new products, many new features, and deeper integration into existing verification flows. So we’d like to wrap up 2014 with an all-new list of holiday gifts for the verification engineer. We hope you like them as much as you liked last year’s offerings:


If Your Chip Is Not a Cache-Coherent SoC, It Soon Will Be

Tuesday, November 25th, 2014

Yes, we know that the title of this week’s post sounds a lot like two previous posts. We wanted to link together the two threads from those posts into a single message that we believe reflects what is happening right now in the world of complex chips. This is a short summary in line with the short week due to the Thanksgiving holiday here in the United States. The line of argument is straightforward:

  • Large chips are adding embedded processors to implement complex functionality while retaining flexibility
  • Single-processor chips are adding multiprocessor clusters to get better performance at a given process node
  • Multiprocessor chips are using shared memory for effective data transfer and interprocess communication
  • Neighbor-connected processor arrays are moving to shared memory to reduce cross-chip data latency
  • Multiprocessor designs are adding caches to reduce memory access time and bypass memory bottlenecks
  • Multiprocessors with caches require coherency in order to ensure that the right data is always accessed

While most of these statements are not universally true, they reflect a significant sea change that we see every day when discussing current and future projects with our customers.


If Your Chip Is Not an SoC, It Soon Will Be

Wednesday, November 5th, 2014

Last week’s post was addressed primarily to those of you who are already designing SoCs. We made the point that more and more SoCs have multiple processors, either homogenous or heterogeneous, and that most or all of those processors do or will have caches. This led to the main conclusions of the post, that multi-processor cache coherency is necessary for most SoCs, and therefore that coherency is now a problem extending beyond CPU developers to many chip-level verification teams.

But what if you don’t have embedded processors in your design? There’s a clear sense emerging in the industry that more and more types of chips are becoming multi-processor SoCs, and most of these will require cache coherency for the CPU clusters and beyond. In this post we’ll describe the trends we see, based in part on what we learned at the recent Linley Processor Conference in Santa Clara. The world as we know it is changing rapidly, offering more challenges for verification teams but more opportunities for us to help.


If Your SoC Is Not Cache Coherent, It Soon Will Be

Thursday, October 30th, 2014

In last week’s post, we discussed in detail how Breker’s TrekSoC and TrekSoC-Si products can verify the performance of your SoC by stressing every aspect of its functionality. Shortly before that, we announced a partnership with Carbon Design Systems to complement their fast, accurate processor models with TrekSoC. About two months ago, we introduced the new Coherency TrekApp and described how it can verify multi-processor cache coherency with minimal effort.

You can see a strong theme here: multi-processor SoC designs, fast simulation models, automatic generation of multi-threaded, multi-processor test cases, and test cases powerful enough to gather realistic performance metrics from pre-silicon simulation. But what if you don’t have multiple processors or caches in your SoC design? There’s a clear sense emerging in the industry that more and more chips are becoming multi-processor SoCs, and most of these will require cache coherency for the CPU clusters and beyond. Let’s explore this topic more in this post.


S2C: FPGA Base prototyping- Download white paper

Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy