Open side-bar Menu
 The Breker Trekker

Posts Tagged ‘PSWG’

Top 5 Latest Holiday Gifts for the Verification Engineer

Wednesday, December 30th, 2015

It’s becoming somewhat of a tradition here on The Breker Trekker blog to close each year with a list of gifts available from us to verification engineers. We started the series two years ago with an initial list focusing on our core benefits of automatic test case generation, system coverage, and reuse both vertically (IP to system) and horizontally (simulation to silicon). Last year’s post offered five more gifts reflecting additional products and new features added to our overall solution:

#5: Easier sequence specification in UVM testbenches.
#4: Faster coverage closure in UVM testbenches.
#3: Integration of system coverage with other coverage metrics.
#2: Debug of automatic test cases using standard tools.
#1: A fully automated solution for cache coherency verification.

Every one of the ten gifts from 2013 and 2014 is still available today for our customers. In addition, we have continued to evolve our Trek family of products and to deploy it on ever more challenging SoC verification projects. Without further ado, here is our all-new list of holiday gifts for the verification engineer in 2015:


Frontiers of Microprocessor Test and Verification

Tuesday, December 22nd, 2015

In last week’s blog post, I reported from the recent 16th International Workshop on Microprocessor Test and Verification (MTV) in Austin. I focused mostly on the panel “Portable Stimulus and Testbenches – Possibilities or Wishful Thinking?” that included representatives from ARM, Cadence, Mentor, Synopsys, Freescale (now NXP), and Breker (yours truly). The panel was most enjoyable, but only one of several highlights for me at MTV.

This week, I’d like to touch briefly on some of the talks and topics on the technical program that caught my ear. These reflected a number of research frontiers for verification as well as several real-world case studies of SoC design projects tackling tough verification challenges. Perhaps the best moment for me was hearing Altera, one of our customers, describe how they used our products successfully on a recent design.


Report from the 16th MTV Workshop

Wednesday, December 16th, 2015

Do you want to hear all the behind-the-scenes dirt from a workshop on the future of the MTV cable channel? Well, you’ll have to look elsewhere. “MTV” in this case means the International Workshop on Microprocessor Test and Verification, which celebrated its 16th incarnation in Austin two weeks ago. Although the name of the workshop has officially expanded to “Microprocessor and SOC Test and Verification” rest assured that the delightfully ambiguous abbreviation “MTV” will remain.

This was only my second time at this event, but I wish that I had been able to attend more. The setting is the top floor of the Hyatt Regency, with great views of Lady Bird Lake (formerly Town Lake) and downtown Austin. However, I noticed that recent high-rise construction has now blocked the sight of the Texas State Capitol from the hotel. The view might be distracting if not for the fact that the technical committee put together an interesting and diverse program, including a panel on portable stimulus.


Mystic Secrets of the Graph – Part Three

Thursday, December 10th, 2015

The past two weeks, we’ve been having a bit of fun playing alchemist and letting readers in on some of the deep, dark secrets of graph-based verification technology. This week, we conclude the series by showing some additional capabilities for our scenario models that are easy to control and view in a graph visualization. Our point is, of course, that graphs are a natural way to represent data flow and verification intent with no advanced degrees from MIT, IIT, or Hogwarts required.

As a quick reminder, graph-based scenario models begin with the end in mind and show all possible paths to create each possible outcome for the design. They look much like a reversed data-flow diagram, with outcomes on the left and inputs on the right. Breker’s Trek family can traverse the graph from left to right, randomizing selections to automatically generate test cases tailored to run in any target platform. Today, we continue using our example of a scenario model to verify that an automobile can move forward or stop.


Mystic Secrets of the Graph – Part Two

Thursday, December 3rd, 2015

Last week, we began exploring some of the ancient, mysterious powers of graph-based scenario models to show their power for verification and ability to capture the verification space, many aspects of the verification plan, and critical coverage metrics. We’re just kidding about the first part; there’s nothing at all mystical or magical about graphs. In fact, this series of posts is intended to show the opposite and demonstrate with a easy-to-follow example the value of graphs.

As we noted in our last post, graph-based scenario models are simple in concept: they begin with the end in mind and show all possible paths to create each possible outcome for the design. They look much like a reversed data-flow diagram, with outcomes on the left and inputs on the right. An automated tool such as Breker’s Trek family can traverse the graph from left to right, randomizing selections to generate test cases that can run in any target platform.


Mystic Secrets of the Graph – Part One

Tuesday, November 24th, 2015

If there’s one thing that Breker is known for, it’s the use of graphs for verification. From our earliest days, we harnessed the abstraction and expressive power of graph-based scenario models to capture the verification space, many aspects of the verification plan, and critical coverage metrics. As we reported in a post a few weeks ago, it looks certain that the industry will follow our lead and base the upcoming standard from Accellera‘s Portable Stimulus Working Group (PSWG) on a graph representation.

As discussions have proceeded both within the PSWG and informally with interested parties, it has become clear that “graph” may not mean the same thing to all people. Our view of graphs is precisely defined in a way that makes it easy for users to create them and feasible for our tools to generated complex, multiprocessor test cases from them. Most of the key concepts can be communicated easily by the use of a familiar example, which we will begin in today’s post and continue next week.


Why C/C++ Is the Lingua Franca for Verification

Tuesday, November 17th, 2015

In last week’s post, we dissected the results for verification languages and methodologies from a recent survey by Mentor Graphics and Wilson Research Group. The main result was that SystemVerilog is growing in popularity on all fronts, but we observed that C/C++ has a significant presence. We also argued that the survey’s focus on simulation likely resulted in C/C++ being under-represented since these languages are widely used for verification with hardware platforms and for silicon validation in the lab.

We see C/C++ as the common link for many types of programming activities, and so widely known that many consider it the lingua franca of software. Just type “lingua franca C/C++” into your favorite search engine and scan the results for some interesting arguments and a few counter-arguments. To be fair, some observers consider C the lingua franca and downplay C++. We tend to group them together since object-oriented programming is now widespread and so moving from C to C++ should be a natural transition.


Verification Languages: Tower of Babel?

Wednesday, November 11th, 2015

One of the cliches we hear from time to time in the industry is “designers want to stick with a single language, but verification engineers love learning new things.” The implication seems to be that because verification engineers have diverse jobs that require them to juggle lots of different tools and models, they necessarily have to learn new languages and methodologies on a regular basis. Of course, they may not actually love learning new languages; doing so may just be in the nature of their work.

Regardless of whether or not they “love” new languages, it is clear that most verification projects involve multiple languages and multiple approaches. One way to gauge the current situation is to turn to the excellent survey that Mentor Graphics performs with Wilson Research Group every couple of years. Harry Foster wrote a series of posts on the Mentor verification blog that give considerable insight into what verification (and design) engineers are doing on real projects.


The Results Are In, and Graphs Win!

Friday, October 2nd, 2015

Anyone who has followed Breker for any length of time knows that our key technology is the ability to generate both Universal Verification Methodology (UVM) testbench transactions and C test cases running on SoC embedded processors automatically from graph-based scenario models. Yes, that’s a long sentence but it’s most of the “elevator pitch” that we might deliver to a potential investor or to a visitor at a trade show booth asking what we do.

For the purposes of today’s post, note that graphs are the root of the solution we provide. Ten years ago, when we first began talking about the idea of graphs as the basis for functional verification of complex chip designs, we were the proverbial pioneer with arrows in our back. But many successful customer engagements and the ever-rising need for better verification have validated our position. Graphs are clearly the “next big thing” in verification and we’d like to explain why.


Riding the Portable Stimulus Wave

Wednesday, September 16th, 2015

Last week, we discussed the details of a noteworthy press release that we issued with Cadence and Mentor Graphics announcing a joint contribution to the Portable Stimulus Working Group (PSWG) of Accellera Systems Initiative. As we expected, this release stirred up a lot of interest in portable stimulus. The timing was perfect, both because of today’s deadline for contributions to the PSWG and because of last week’s DVCon India conference. I’d like to provide some updates on both activities.

First of all, the three companies did upload our joint contribution document to the PSWG internal Web site today in time for the deadline. Please note that, as per the rules for Accellera and most other standards groups, working documents are not available to the general public. If you’d like to see the contribution and follow the evolution of the standard, please consider joining the PSWG. If your company is not yet a member of Accellera, then please alert your standards manager to the benefits of participation.


S2C: FPGA Base prototyping- Download white paper

Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy