Open side-bar Menu
 Real Talk

Posts Tagged ‘system power’

UPF 3.0 – Making Power Intent Manageable, Incremental and Executable

Thursday, April 7th, 2016

UPF provides a consistent format to specify power design information that may not be easily specifiable in a design description. In certain situations it is undesirable to specify power semantics directly in the HDL, as doing so might tie down the implementation to certain power constraints. UPF provides a way to specify the power intent for different states and contexts, external to the design, to be used for implementation, modeling, simulation and verification. The semantics of UPF are consistent across implementation and verification, guaranteeing that what is being verified is indeed what was implemented.

UPF assumes a logical hierarchy that is a more abstract model of the design hierarchy. The logical hierarchy can be viewed as a conceptual structure for locating power management objects such as power domains and power states. Each object is defined in a specific scope of logical hierarchy. This logical hierarchy can be effectively used in a top-down UPF methodology, where the more abstract states are higher up in the hierarchy (global states), and the lower hierarchical objects are more refined versions of their ancestors. (more…)

SoC Power Management: Which Power are We Talking About?

Thursday, June 18th, 2015

I agree with the observation that low-power is a largely unsolved problem. We have seen a tremendous change in the past decade and a half in low-power research, particularly in the context of micro-architecture for small devices and embedded systems. The chief catalyst for this research is the unprecedented growth in the proliferation of handheld mobile devices. In today’s design flows, power management has emerged as the second most important challenge, next only to timing closure, ahead of meeting timing and area goals and taping out on schedule.

Process technology for low-power gains has come a long way. In the early days, a low-power process typically meant a 20% hit in performance. Such performance hits are no longer acceptable, and process technology has improved to offer several standard cell height choices with different threshold voltages for different performance, power and density tradeoffs. Despite all these advances, process technology will not deliver all the gains needed in an optimal low-power device. See the figure below. (more…)

P2415 – New IEEE Power Standard for Unified Hardware Abstraction

Thursday, December 4th, 2014

The IEEE announced in September that is was launching working a on a new power standard called P2415. This blog gives the background for this new effort.

The current low power design and verification standard (IEEE 1801-2013 and IEEE P1801) is focused on the voltage distribution structure in design at Register Transfer Level (RTL) description and below. It has minimal abstraction for time (having only an interval function for modeling clock frequency), but depends on other hardware oriented standards to abstract events, scenarios, clock trees, etc. which are required for energy proportional design, verification, modeling and management of electronic systems. The necessary abstractions of hardware, as well as layers and interfaces in software are not yet defined by any existing standards. (more…)

S2C: FPGA Base prototyping- Download white paper
TrueCircuits: IoTPLL

Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy