Open side-bar Menu
 Real Talk

Posts Tagged ‘soc design’

UPF 3.0 – Making Power Intent Manageable, Incremental and Executable

Thursday, April 7th, 2016

UPF provides a consistent format to specify power design information that may not be easily specifiable in a design description. In certain situations it is undesirable to specify power semantics directly in the HDL, as doing so might tie down the implementation to certain power constraints. UPF provides a way to specify the power intent for different states and contexts, external to the design, to be used for implementation, modeling, simulation and verification. The semantics of UPF are consistent across implementation and verification, guaranteeing that what is being verified is indeed what was implemented.

UPF assumes a logical hierarchy that is a more abstract model of the design hierarchy. The logical hierarchy can be viewed as a conceptual structure for locating power management objects such as power domains and power states. Each object is defined in a specific scope of logical hierarchy. This logical hierarchy can be effectively used in a top-down UPF methodology, where the more abstract states are higher up in the hierarchy (global states), and the lower hierarchical objects are more refined versions of their ancestors. (more…)

SoCcer: Defending your Digital Design

Thursday, August 14th, 2014

Weird things can happen during a presentation to a customer!

I was visiting a customer site giving an update on the latest release of our Ascent and Meridian products. It was taking place during the middle of the day, in a large meeting room, with more than 30 people in the audience. Everything seemed to be going smoothly.

Suddenly there was an uproar, with clapping and cheers coming from an adjacent break room. Immediately, everyone in my audience opened their laptops, and grinned or groaned at the football score.

The 2014 FIFA World Cup soccer championship game was in full swing!

As Germany scored at will against Brazil, I lost count of the reactions by the end of the match! The final score was a crushing 7-1.

It disturbed my presentation alright, but it also gave me some food for thought.

If I look at  SoC design as a SoCcer game, the bugs hiding in the design are like potential scores against us, the chip designers. We are defending our chip against bugs. Bugs could be related to various issues with design rules (bus contention), state machines (unreachable states, dead-codes), X-optimism (X propagating through x-sensitive constructs), clock domain crossing (re-convergence or glitch on asynchronous crossings), and so on.

Bugs can be found quickly, when the attack formation of our opponent is easy to see, or hard to find if the attack formation is very complex and well-disguised.

It is obvious that more goals will be scored against us if we are poorly prepared. The only way to avoid bugs (scores against us) is to build a good defense. What are some defenses we can deploy for successful chips?

We need to have design RTL that is free from design rule issues, free of deadlocks in its state machines, free from X-optimism and pessimism issues, and employs properly synchronized CDC for both data and resets and have proper timing constraints to go with it.

Can’t we simply rely on smart RTL design and verification engineers to prevent bugs? No, that’s only the first line of defense. We must have the proper tools and methodologies. Just like, having good players is not enough; you need a good defense strategy that the players will follow.

If you do not use proper tools and methodologies, you increase the risk of chip failure and a certain goal against the design team. That is like inviting penalty kick. Would you really want to leave you defense to the poor lone goal keeper? Wouldn’t you rather build methodology with multiple defense resources in play?

So what tools and methodologies are needed to prevent bugs? Here are some of the key needs:

  • RTL analysis (Linting) – to create RTL free of structural and semantic bugs
  • Clock domain crossing (CDC) verification – to detect and fix chip-killing CDC bugs
  • Functional intent analysis (also called auto-formal) – to detect and correct functional bugs well before the lengthy simulation cycle
  • X-propagation analysis – to reduce functional bugs due to unknowns X’s in the design and ensure correct power-on reset
  • Timing constraints verification – to reduce the implementation cycle time and prevent chip killer bugs due to bad exceptions

Proven EDA tools like Ascent Lint, Ascent IIV, Ascent XV, Meridian CDC and Meridian Constraints meet these needs effectively and keep bugs from crossing the mid-field of your design success.

Next time, you have no excuse for scores against you (i.e. bugs in the chip). You can defend and defend well using proper tools and methodologies.

Don’t let your chips be a defense-less victim like Brazil in that game against Germany! J

Executive Insight: On the Convergence of Design and Verification

Thursday, August 7th, 2014

This article was originally published on TechDesignForums and is reproduced here by permission.

Sometimes it’s useful to take an ongoing debate and flip it on its head. Recent discussion around the future of simulation has tended to concentrate on aspects best understood – and acted upon – by a verification engineer. Similarly, the debate surrounding hardware-software flow convergence has focused on differences between the two.

Pranav Ashar, CTO of Real Intent, has a good position from which to look across these silos. His company is seen as a verification specialist, particularly in areas such as lint, X-propagation and clock domain crossing. But talk to some of its users and you find they can be either design or verification engineers.

How Real Intent addresses some of today’s challenges – and how it got there – offer useful pointers on how to improve your own flow and meet emerging or increasingly complex tasks.


S2C: FPGA Base prototyping- Download white paper

Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy