Open side-bar Menu
 Real Talk

Archive for 2014

New CDC Verification: Less Filling, Picture Perfect, and Tastes Great!

Thursday, October 9th, 2014

Real Intent will release our greatly extended Meridian CDC clock domain crossing software in November with new capabilities headlined by more hierarchical firepower and the launch of a user-configurable debugger.

The 2014.A edition announced last week (on my wife’s birthday),  will have 30% higher performance against the existing tool and a 40% smaller memory footprint. The formal analysis engine within Meridian has also been given a 10X boost in throughput.

In the YouTube video interview below, Ramesh Dewangan, vice-president of application engineering, points out that the bottom-up hierarchical flow is key to Meridian CDC’s giga-scale capacity (though the tool is equally capable of handling designs ‘flat’).

The hierarchical approach means that the complete design view of the SoC is available for CDC analysis at any time. There is no abstraction or any approximation that is used that has a potential to miss bugs. Being more specific, there is neither abstract modeling nor waivers.

(more…)

ARM Fueling the SoC Revolution and Changing Verification Sign-off

Thursday, October 2nd, 2014

ARM TechCon was in Santa Clara this week and Real Intent was exhibiting at the event.  TechCon was enjoying its 10th anniversary and ARM was celebrating the fact that it is at the center of the System-on-Chip (SoC) revolution.

The SoC ecosystem spans the gamut of designs from high-end servers to low-power mobile consumer segments. A large and heterogeneous set of players (foundries, IP vendors, SoC integrators, etc.) has a stake in fostering the success of the ecosystem model. While the integrated device manufacturer (IDM) model has undeniable value in terms of bringing to bear large resources in tackling technology barriers, one could argue that the rapid-fire smartphone revolution we have experienced in the last five years owes in large part to the broad-based innovation enabled by the SoC ecosystem model. How are the changing dynamics of SoCs driving changes in verification requirements, tools and flows and thereby changing the timing sign-off paradigm?
(more…)

Does Your Synthesis Code Play Well With Others?

Thursday, September 25th, 2014

Recently, Real Intent put out a new release of our Ascent Lint tool, which checks your RTL to make sure it meets the standards for good coding practices.  Linting has the advantages of delivering very quick feedback on troublesome and even dangerous coding style that causes problems that can show up in simulation, but will likely take a much longer time to uncover. With the right lint tool, you can catch the “low-hanging fruit” before tackling functional errors.  In a recent blog, we discussed how a staged analysis starting with Initial checks, followed by Mature and Handoff checks, can very efficiently get you to ‘hardened’ RTL code that is ready to be integrated with the rest of the design.

(more…)

It’s Time to Embrace Objective-driven Verification

Thursday, September 18th, 2014

This article was originally published on TechDesignForums and is reproduced here by permission.

Consider the Wall Street controversy over High Frequency Trading (HFT). Set aside its ethical (and legal) aspects. Concentrate on the technology. HFT exploits customized IT systems that allow certain banks to place ‘buy’ or ‘sell’ stock orders just before rivals, sometimes just milliseconds before. That tiny advantage can make enough difference to the share price paid that HFT users are said to profit on more than 90% of trades.

Now look back to the early days of electronic trading. Competitive advantage then came down to how quickly you adopted an off-the-shelf, one-size-fits-all e-trading package.

(more…)

Autoformal: The Automatic Vacuum for Your RTL Code

Thursday, September 11th, 2014

The Roomba automatic vacuum cleaner may be the most popular home robot in the world.   It wakes up, wanders around your house collecting ‘dust bunnies’ and other dirt and then parks itself, where it can recharge and be ready for the next cleaning cycle.

shark_cat_roomba[1]

Cat in a Shark Costume Riding a Roomba

Real Intent also offers an automatic tool that cleans up your RTL code. (more…)

How Bad is Your HDL Code? Be the First to Find out!

Thursday, September 4th, 2014
builtd-it-and-the-bugs-will-come(Courtesy of Andy Glover, cartoontester.blogspot.com)

(more…)

Fundamentals of Clock Domain Crossing: Conclusion

Thursday, August 28th, 2014

In our last post in series, part 4, we looked at the costs associated with debugging and sign-off verification.  In this final posting, we propose a practical and efficient CDC verification methodology.

Template recognition vs. report quality trade-off

The first-generation CDC tools employed structural analysis as the primary verification technology. Given the lack of precision of this technology, users are often required to specify structural templates for verification. Given the size and complexity to today’s SOCs, this template specification becomes a cumbersome process where debugging cost is traded for setup cost. Also, the checking limitations imposed by templates may reduce the report volume, but they also increase the risk of missing errors. In general, template-based checking requires significant manual effort for effective utilization.

(more…)

Video Keynote: New Methodologies Drive EDA Revenue Growth

Thursday, August 21st, 2014

Wally Rhines from Mentor gave an excellent keynote at the 51st Design Automation Conference on how EDA grows by solving new problems.  In his short talk, he references an earlier keynote he gave back in 2004 and what has changed in the EDA industry since that time.

Here is a quick quote from his presentation: “Our capability in EDA today is largely focused on being able to verify that a chip does what it’s supposed to do. The problem of verifying that it doesn’t do anything it’s NOT supposed to do is a much more difficult one, a bigger one, but one for which governments and corporations would pay billions of dollars for to even partially solve.”

Where do you think future growth will come in EDA?

(more…)

Steve McQueen’s Mustang Explains Net Neutrality — Thursday, Aug. 21

Tuesday, August 19th, 2014

I became aware of the following Panel discussion taking place on Thursday, Aug. 21 in Palo Alto CA, and thought it would be of interest to the EDACafe audience.

Net Neutrality is all but certain to influence the patterns of data communication. Irrespective of its outcome, the viability of underlying infrastructure and economics is still an evolving discussion.

In this panel, the philosophical value chain of Net Neutrality is explored. As consumers, it is imperative on us to inspect the scalability of such policies towards our future requirements. For which, the flow of data across Content Delivery Networks, Wired and Wireless Operators, and Service Providers are critical to be understood. Conceptualizing a value chain and its components provides context for studying the broader impact. Essentially, fairness and value are what individuals, entrepreneurs and enterprises seek in sustaining the growing demands of data usage.

The goal of this event is hence in peeling back the layers of technology, usability and regulatory standards to better understand the fundamental forces at play.

For a quick background on the topic, watch Steve McQueen’s Mustang Explains Net Neutrality. (more…)

SoCcer: Defending your Digital Design

Thursday, August 14th, 2014

Weird things can happen during a presentation to a customer!

I was visiting a customer site giving an update on the latest release of our Ascent and Meridian products. It was taking place during the middle of the day, in a large meeting room, with more than 30 people in the audience. Everything seemed to be going smoothly.

Suddenly there was an uproar, with clapping and cheers coming from an adjacent break room. Immediately, everyone in my audience opened their laptops, and grinned or groaned at the football score.

The 2014 FIFA World Cup soccer championship game was in full swing!

As Germany scored at will against Brazil, I lost count of the reactions by the end of the match! The final score was a crushing 7-1.

It disturbed my presentation alright, but it also gave me some food for thought.

If I look at  SoC design as a SoCcer game, the bugs hiding in the design are like potential scores against us, the chip designers. We are defending our chip against bugs. Bugs could be related to various issues with design rules (bus contention), state machines (unreachable states, dead-codes), X-optimism (X propagating through x-sensitive constructs), clock domain crossing (re-convergence or glitch on asynchronous crossings), and so on.

Bugs can be found quickly, when the attack formation of our opponent is easy to see, or hard to find if the attack formation is very complex and well-disguised.

It is obvious that more goals will be scored against us if we are poorly prepared. The only way to avoid bugs (scores against us) is to build a good defense. What are some defenses we can deploy for successful chips?

We need to have design RTL that is free from design rule issues, free of deadlocks in its state machines, free from X-optimism and pessimism issues, and employs properly synchronized CDC for both data and resets and have proper timing constraints to go with it.

Can’t we simply rely on smart RTL design and verification engineers to prevent bugs? No, that’s only the first line of defense. We must have the proper tools and methodologies. Just like, having good players is not enough; you need a good defense strategy that the players will follow.

If you do not use proper tools and methodologies, you increase the risk of chip failure and a certain goal against the design team. That is like inviting penalty kick. Would you really want to leave you defense to the poor lone goal keeper? Wouldn’t you rather build methodology with multiple defense resources in play?

So what tools and methodologies are needed to prevent bugs? Here are some of the key needs:

  • RTL analysis (Linting) – to create RTL free of structural and semantic bugs
  • Clock domain crossing (CDC) verification – to detect and fix chip-killing CDC bugs
  • Functional intent analysis (also called auto-formal) – to detect and correct functional bugs well before the lengthy simulation cycle
  • X-propagation analysis – to reduce functional bugs due to unknowns X’s in the design and ensure correct power-on reset
  • Timing constraints verification – to reduce the implementation cycle time and prevent chip killer bugs due to bad exceptions

Proven EDA tools like Ascent Lint, Ascent IIV, Ascent XV, Meridian CDC and Meridian Constraints meet these needs effectively and keep bugs from crossing the mid-field of your design success.

Next time, you have no excuse for scores against you (i.e. bugs in the chip). You can defend and defend well using proper tools and methodologies.

Don’t let your chips be a defense-less victim like Brazil in that game against Germany! J

CST Webinar Series
S2C: FPGA Base prototyping- Download white paper



Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy