Open side-bar Menu
 Real Talk

Archive for July 10th, 2014

Fundamentals of Clock Domain Crossing Verification: Part One

Thursday, July 10th, 2014

The increase in SOC designs is leading to the extensive use of asynchronous clock domains. The clock-domain-crossing (CDC) interfaces are required to follow strict design principles for reliable operation. Also, verification of proper CDC design is not possible using standard simulation and static timing-analysis (STA) techniques. As a result, CDC-verification tools have become essential in design flows.

A good understanding of the CDC problem requires an understanding of metastability and the associated design challenge.


When the input signal to a data latch changes within the setup-and-hold window around the transition of the latching clock, the latch output can become metastable at an intermediate voltage between logical zero and one. Figure 1 shows a simplified latch implementation. The metastable state is a very high-energy state as shown in Figure 2. Because of noise in the chip environment, this metastable voltage gets disturbed and eventually resolves to a logical value. The resolution time is dependent upon the load on the latch output and the gain through the feedback loop. It is impossible, however, to predict this logical value. Also, there is an inherent delay in the resolution of the metastable output as shown in the timing diagram of Figure 3. This logical and timing uncertainty introduces unreliable behavior in the design and, without proper protection, can cause it to fail in unpredictable ways.


Figure 1. A simplified latch.


S2C: FPGA Base prototyping- Download white paper

Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy