Open side-bar Menu
 Embedded Software
Colin Walls
Colin Walls
Colin Walls has over thirty years experience in the electronics industry, largely dedicated to embedded software. A frequent presenter at conferences and seminars and author of numerous technical articles and two books on embedded software, Colin is an embedded software technologist with Mentor … More »

Small or fast?

September 15th, 2014 by Colin Walls

Life is often about compromise, but embedded developers really are not good at that. Code generation is a context in which compromise is somewhat inevitable and we call it “optimization”. All modern compilers perform optimization, of course. Some do a better job than others. A lot of the time, the compiler simply guesses which optimization will produce the best result without knowing what the designer really wants. For desktop applications, this is OK. Speed is the only important criterion, as memory is effectively free. But embedded is different …

To the first approximation, all desktop computers are the same. It is quite straightforward to write acceptable applications that will run on anyone’s machine. Also, the broad expectations of their users are the same. Embedded systems are all different – the hardware and software environment varies widely and the expectations of users are just as diverse. In many ways, this is what is particularly interesting about embedded software development.

An embedded compiler is likely to have a great many options to control optimization. Sometimes that fine-grain control is vital; on other occasions, it can come down to a simple choice between optimization for speed or size. This choice is curious, but it is simply an empirical observation that small code is often slower and fast code tends to need more memory.

meanAn obvious example is function inlining. A small function can be optimized so that its actual code is placed in line at each call site. This executes faster, because the call/return sequence is eliminated. But it will use more memory as there may be multiple copies of identical code. Sometimes you can get lucky and an optimization which yields faster code is also light on memory, but this is quite unusual.

The control of optimization for embedded code generation is not set to get any easier, as more possibilities are coming along. Notably, there is increased interest in minimizing power consumption. An algorithm may be selected on the basis of how much CPU power it requires to get the job done. This is subtle, because fast code needs less CPU power, but smaller code needs less memory, which consumes power.

I would be very interested to hear your stories by comment or email about good [and bad] optimizations that you have encountered.

Related posts:

Leave a Reply

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

S2C: FPGA Base prototyping- Download white paper

Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy