Open side-bar Menu
 Custom Layout Insights

Posts Tagged ‘PCell’

Current Solutions for FinFET (Part 2)

Wednesday, April 6th, 2016

So, hopefully, you are now aware of Synopsys’ new Custom Compiler solution tuned for rapid implementation of FinFET custom designs. Custom Compiler features a pioneering visually-assisted automation flow that speeds up custom design tasks from days to hours, reduces iterations and enables reuse–very exciting stuff!

But I want to continue my previous discussion thread to help you get a better understanding of the scope of the challenges inherent in FinFET design (and hopefully avoid some pitfalls).

So, going back to where I left off earlier… PCells for custom layout have been a ‘no brainer’ for decades. They have done all the heavy lifting with respect to generating correct-by-construction layout and have been the most important ‘power’ tool for custom layout engineers. Now however, given the complexity of the FinFET process, they become absolutely vital.

Generating a FinFET device is easy when you have a PCell. When coded correctly, it will automatically generate the device such that the fins are properly spaced on the requisite ‘fin grid’ and that all the rules for Poly width/length, Diffusion width/length, Poly cuts and the like are adhered to. In addition to constructing the device design rule correctly, the PCell will also ensure that the metals in the device are colored correctly and abide by the color-related rules. As you can imagine, there is a lot of stuff going on in a FinFET PCell, but there is more. FinFET PCells have to be ‘smarter than the average PCell’ and they have to be in tune with the layout methodology.

Current Solutions for FinFET (Part 1)

Monday, March 28th, 2016

What tools do we have in our FinFET toolbox that can help layout engineers manage the complexity that FinFETs inherently bring?

Well for my money, the best and most powerful tool we have to tackle FinFET complexity is the good old parameterized cell or PCell. PCells are not new, they have been around since the CALMA GDS days and along with Schematic-Driven Layout, have been instrumental in boosting layout productivity, as I have mentioned in my previous posts. PCells have typically been used to generate physical layout of pretty much all the devices needed for custom layout, from resistors to inductors, capacitors and, of course, the transistor. That is still the case for FinFET designs; however the role of the PCell has now been expanded to include the schematic PCell.

So what’s the big deal about a schematic PCell, you might ask? And why didn’t we have them before?

Well, some companies did use schematic PCells, but mainly to generate symbols. With FinFET there are many more reasons that a schematic PCell should be used. It boils down to three things: complexity, aesthetics, and productivity.


S2C: FPGA Base prototyping- Download white paper

Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy