Open side-bar Menu
 Aldec Design and Verification

Posts Tagged ‘verification’

For DO-254 Compliance, Hardware Flies Not Simulations

Thursday, February 20th, 2014

DO-254 defines 3 types of verification methods: Analysis, Test and Review. In order to satisfy the verification objectives defined in DO-254, applicants must formulate a requirements-based verification plan that employs a combination of the three methods.

Analysis vs. Test

A computerized simulation of the hardware item is considered an Analysis. Test is a method that confirms the actual hardware item correctly responds to a series of stimuli. Any inability to verify specific requirements by Test on the device itself must be justified and alternative means of verification must be provided. In DO-254, the hardware test is far more important than the simulation. Certification authorities favor verification by test for official verification credits because of the simple fact that hardware flies, not simulation models.  Requirements describing pin-level behavior of the device must be verified by hardware test.


Much has changed in the last 30 years

Friday, January 10th, 2014

When I first launched Aldec in 1984, home computers hadn’t quite taken off and innovations such as the compact disk and those oversized, power draining cellphones were still struggling to obtain mass acceptance.

Fast forward 30 years, even those of us in the electronics industry have whiplash from the speed at which technology is advancing and delivering new products. Buyers are more eager to become early adopters of innovative new technology, and smarter, faster tools are required to keep pace.

As a long-time member of the Electronic Design Automation (EDA) community, Aldec has had a front row seat to the technology race and over the years we have celebrated many successes of our own. Here, our product managers reflect on some of our most memorable highlights from 2013.


It’s no accident that Aldec offers the best VHDL-2008 support

Wednesday, December 11th, 2013

Here at the Aldec corporate office, we have a sign that reminds us all of our mission in the field of Technology. It reads, ‘To deliver solutions that provide the highest productivity to value ratio; supporting our existing products while delivering innovation to current and new technologies’. We have similar statements to reaffirm our commitment in the areas of Research, Alliances, and Culture – we call it our “Aldec DNA”.

Because we genuinely want to have a clear understanding of our user’s requirements and methodology preferences, we continually engage in surveys and interviews.  The knowledge we gain better positions us to support our existing products and to deliver that support where it matters the most to our users. If you’ve ever had that frustrating experience where your favorite tool no longer supports your methodology of choice – then you understand why this is so important.

Our Commitment to the VHDL Community

When it comes to VHDL-2008, we have learned from our customers that many are happy using the methodology – and continue to successfully deliver cutting-edge technology with it. So, while we remain committed to delivering innovation to new technologies, our R&D teams also invest a great deal of development time to ensure that Aldec solutions continue to offer a high level of support for popular languages like VHDL.

For the rest of this article, visit the Aldec Design and Verification Blog.

Effective Communication is Key in Relationships… and ESL Design!

Monday, November 25th, 2013

COMRATE™, the co-simulation solution developed by Aldec and Agilent is a lot like “couples-therapy” that can help get your digital blocks talking to the rest of your model-based design.

To illustrate, let’s take a look at a very basic model-level design and think about it from design-under-test perspective (i.e., what are the challenges associated with verifying this DUT):

For the rest of this article, visit the Aldec Design and Verification Blog.


Aldec and NEC reveal HLS shortcut at upcoming SoC Conference

Friday, October 18th, 2013

The University of California, Irvine (UCI) is popular for many things, but I recall during my school days that it was distinctly known among students for its underground tunnel network. The official story is that they were simply built to house heating and cooling pipes. Yet, the rumor persists that this complex maze of underground tunnels was constructed decades ago to provide safe passage for faculty members in case of student riots.

I’ll admit I would love to uncover these tunnels someday, unfortunately they have long been sealed off from curiosity seekers. I will, however, be at the UCI campus next week unraveling a different sort of maze for engineers attending the annual International SoC Conference. Aldec is once again a Platinum Sponsor for this popular academic conference, and this year I will be joined by NEC Corporation’s Dr. Wakabayashi to present a technical session:


Integrating SystemVerilog and SCE-MI for Faster Emulation Speed

Wednesday, October 9th, 2013

In the last SCE-MI article, we discussed how SCE-MI macro-based infrastructures can speedup SoC design verification time. In SCE-MI 2.1, Accelera introduced a ‘function-based’ infrastructure which is based on SystemVerilog DPI functionality. The SystemVerilog DPI is an interface which can be used to connect SystemVerilog files with foreign languages (C, C++, SystemC, etc).


SCE-MI for SoC Verification

Wednesday, September 18th, 2013

Today’s System-on-Chip verification teams are moving up in the levels of abstraction to increase the degree of coverage in the system design. As designs grow larger, we start to see an increase in test time within our HDL simulations. Engineers can utilize Hardware-Assisted approaches such as simulation acceleration, transaction-level co-emulation, and prototyping to combat the growing simulation times of an RTL simulator. In this article, we’ll dive much deeper into the transaction-level co-emulation methodology.


The WHAT is mandatory but the HOW is entirely optional

Monday, September 9th, 2013

You look confused. Perhaps I owe you an explanation. Anyone familiar with hardware design flow knows that it starts with specification and ends with implementation. The specification in this flow is the “What” – it defines what needs to be designed. The process for implementation is the “How” – it defines how you are going to achieve it.

Let’s break down just one part of the “How” or implementation – the Design Process. For many years hand-coded RTL has been used as the de facto method for implementation and it is still being used as predominant method for designing cutting-edge hardware. But does it follow that it is the most efficient method? I would say probably not, especially given the ever-growing complexity of the hardware.

For the rest of this article, visit the Aldec Design and Verification Blog.

90’s Kid Active-HDL Celebrates Sweet 16

Wednesday, August 28th, 2013

As the proud Product Manager of Aldec’s  FPGA Design Simulation solution,  I am excited (like it was my first Cranberries concert) to announce that Active-HDL™ is celebrating 16 years since its initial release in 1997. Active-HDL has not merely stood the test of time, it has dominated the FPGA market like a Hulk Hogan smackdown with powerful simulation performance and debugging tools.

The key to Active-HDL’s long-term success lies in Aldec’s customer-centric philosophy. Simply put, we really do listen closely to our users and invest heavily in our tools. For this reason, continued simulation performance optimizations from release to release enable users to benefit from Active-HDL’s faster simulation even as the size of FPGA designs continues to grow.


The Magic of CyberWorkBench

Thursday, August 22nd, 2013

Dr. Benjamin Carrion Schafer, Assistant Professor at Hong Kong Polytechnic University (and longtime fan of Aldec’s latest offering, CyberworkBench from NEC) was kind enough to author a guest blog for Aldec. Here’s an excerpt:

My first encounter with NEC’s CyberWorkBench (CWB) was in 2003 while attending DAC. Like most people, I was surprised to see a big Japanese company offering EDA tools. NEC is definitely known more for its consumer products and telecommunication equipment. I have to admit, the main reason I stopped at their booth – was that they had hired a magician.

This magician told the audience he would teach us a trick and give us a set of magic cards if we stayed until the end of the presentation. I did and I received my set of magic cards (which I still keep). At the same time I also became a CWB user and even wound up working for NEC.

As an assistant Professor at the Hong Kong Polytechnic University, I currently teach advanced VLSI courses and use CWB. It has some amazing capabilities. Let’s start with the fact that it supports ANSI-C and SystemC. Although SystemC might be a step in the right direction to have a unique standardized IEEE language, supported by all main HLS tools, it is not very intuitive and takes some time to master (especially if the user does not have a C++ background). Here is where ANSI-C support becomes very handy. Most people do know ANSI-C and it is very straightforward to convert any ANSI-C SW description into synthesizable C code.

For the rest of this article, visit the Aldec Design and Verification Blog.

S2C: FPGA Base prototyping- Download white paper

Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy