Open side-bar Menu
 Aldec Design and Verification

Posts Tagged ‘prototyping’

Partition your Design for FPGA Prototyping

Monday, December 11th, 2017

Modern ASIC and SoC designs have increased in complexity such that multiple FPGAs of the largest capacity are now required to prototype the entire functionality of the design. As design sizes increase, more and more FPGAs are required. The capacity and pin limitations of FPGAs create constraints for how the ASIC/SoC design can be mapped into the FPGAs. Aldec’s HES-DVM’s prototyping mode accounts for the limitations of the target FPGAs and allows the user to map a design to the FPGAs within these constraints.

Partitioning a design to fit into multiple FPGAs can be a lot of work

Designing the partitions with HES-DVM is as easy as selecting specific VHDL/SystemVerilog design modules from the hierarchy and moving them to a desired partition. All information about the design modules and the amount of LUTs, Flip-flops, memory blocks, DSP slices, and I/O consumed are displayed for convenience. These values can also be viewed as a percentage of the target FPGAs’ available resources allowing you to know when an FPGA is full.

Adding a module to a partition

Mapping a partition to an FPGA

Once the partitions are finalized, each partition can be assigned to a specific FPGA. A design successfully fitting into the FPGAs on the target prototyping board is only the beginning. There still remains a big problem with the sheer number of connections between the partitions. Modern designs have thousands of internal signals interconnecting major blocks or sub-systems. It’s likely that there won’t be a sufficient amount of direct connections between FPGAs to support the design’s internal wiring. How can the large amount of internal design signals possibly be accommodated by the relatively smaller amount of I/O available from the FPGAs?

For the rest of this article, visit the Aldec Design and Verification Blog.

Emulation in FPGA

Wednesday, November 22nd, 2017

For many years, emulators were available only to verification teams working on the largest projects in companies with deep enough pockets. Due to size rather than capabilities they were called “Big Box” emulators and typically were used in order to recover some of the time lost on RTL simulation. Meanwhile, FPGA technology has been available long enough to mature to the point where FPGA based emulation became available – and I’m not talking here about FPGA prototyping.

“Emulation – Prototyping, aren’t they just synonyms?”

Sure, they are not. The most significant differences between FPGA usage in prototypes and in emulation are shown in table 1.

 

Prototyping

Emulation

Clock frequency

10-200 MHz

1-20 MHz

Clock Topology

Multiple asynchronous sources – limited number of domains

Derived from emulation core clock – unlimited number of domains

Speed Limitation

Fixed,
Determined by Inter-FPGA signal multiplexing

Adaptive,
Determined by FPGA-to-Host Comms, Inter-FPGA signal multiplexing

Stimulus Source

In-System, Real-world IO

Host,
Connection with simulators, virtual platforms, virtual models and other testbenches

Signal Capture

Selected Nodes

Full Visibility

Memory Models

Near-match to physical

Modelled

Design Setup

Computer aided but with extensive user’s input and decisions

Fully automated

Table 1: Typical differences between FPGA usage in prototyping and emulation

FPGAs are the fastest platform for prototyping, but we can also harness that speed into our verification environment, then we can achieve runtime performance 2x to 5x faster than traditional “big box” emulation systems, and all at a fraction of the cost per gate per MHz.

“FPGAs are way too small for our SoC design, aren’t they?”

In the HES-US-2640 board, Aldec already has the largest capacity single FPGA boards commercially available today. Connecting 4 such boards in a backplane gives you 24 largest Xilinx UltraScale chips in which you can implement 633 Million ASIC Gates and still have 40% of capacity margin to facilitate FPGA Place & Route.

Figure 1: Scalable HES platform for prototyping & emulation

Not all designs need such excessive capacity, especially IoT projects, where the primary requirement is small footprint and energy-safe design. You will find the proper configuration in Aldec HES boards versatile portfolio containing Virtex-7, Virtex UltraScale and Kintex UltraScale based hardware.

 

For the rest of this article, visit the Aldec Design and Verification Blog.

Zynq-based Embedded Development Kit for University Programs

Tuesday, October 17th, 2017

Creativity and innovation, which lead the society to success, rest on the foundational institutions such as schools and universities. They provide fertile soil to seed, grow and flourish enterprises. To harvest more within an industry, the ecosystem needs to be enriched where the seeds are grown. Considering that the university’s courses are the nutrition to student, they need to be designed in a productive manner as they will provide the next generation of engineers. By providing the necessary platform in addition to the rich and informative tutorials, the quality of the input information for students would be assured. Particularly in the field of Electrical and Computer Engineering, it is important that students get as much hands on experience as possible, and tackle design challenges – such as HW/SW co-design and co-verification – before entering the job market; for their own benefit as well as the industry as a whole.

In this blog, you will become familiar with the TySOM Education kit (TySOM EDU) package designed for the university courses related to hardware design and embedded system design researches.

The TySOM EDU contains a TySOM embedded development board, Riviera-PRO advanced hardware simulator and informative tutorials and reference designs. Although it is possible to choose any development board from the TySOM embedded development board family, the TySOM-1A-7Z010 would be the most cost-effective solution for most university projects.

TySOM-1A-7Z010 (ZynqTM) is a ready-to-use and feature-rich embedded development board which provides the required peripherals to tackle both basic and advanced Zynq-based projects. The XC7Z010 is based on the Xilinx® All Programmable System-on-Chip (SoC) architecture, which integrates a dual-core ARM Cortex-A9 processor with Xilinx 7-series Field Programmable Gate Array (FPGA) logic. Coupling the device to a rich set of peripherals for connectivity, communication and multimedia, makes this board ideal for university projects requiring HW/SW co-design.  For the rest of this article, visit the Aldec Design and Verification Blog.

Software Driven Test of FPGA Prototype: Use Development Software to Drive Your DUT on an FPGA Prototyping Platform

Monday, April 10th, 2017

on chip analyzerMost everyone would agree how important FPGA prototyping is to test and validate an IP, sub-system, or a complete SoC design. Before the design is taped-out it can be validated at speeds near real operating conditions with physical peripherals and devices connected to it instead of simulation models. At the same time, these designs are not purely hardware, but these days incorporate a significant amount of the software stack and so co-verification of hardware and software is put at high importance among other requirements in the verification plan.

 

However, preparing a robust FPGA prototype is not a trivial task. It requires strong hardware skills and spending a lot of time in the lab to configure and interconnect all required peripheral devices with an FPGA base board. Even more difficult is to create a comprehensive test scenario which contains procedures to configure various peripherals. Programming hundreds of registers in proper sequence and then reacting on events, interrupts, and checking status registers is a complex process. The task which is straightforward during simulation, where full control over design is assured, becomes extremely hard to implement in an FPGA prototype. Facing this challenge, verification engineers often connect a microprocessor or microcontroller daughter card to the main FPGA board. The IP or SoC subsystem you are designing will be connected with some kind of CPU anyhow, so this way seems natural. Having a CPU connected to the design implemented in an FPGA facilitates creating programmatically reconfigurable test scenarios and enables test automation. Moreover, the work of software developers can be now reused as the software stack with device drivers can become a part of the initialization procedure in the hardware test.. The software can become a part of the initialization procedure in the hardware test. If that makes sense to you, then why not use an FPGA board that has all you need – both FPGA and the CPU?
(more…)

To Emulate or Prototype?

Monday, May 23rd, 2016

Emulation-or-PrototypingRecently I read a Semiwiki article, Army of Engineers on Site Only Masks Weakness, in which author Jean-Marie Brunet of Mentor Graphics wrote that FPGA Prototyping requires an army of tech support engineers on-site to mask the weaknesses of FPGA prototyping flows. As the Tech Support Manager for Aldec Hardware Emulation Solutions, I have to admit I’ve never had to deploy an army onsite.

It is true that FPGA Prototyping is more challenging than emulation. Yet, for the time invested in prototype setup, developers are rewarded with a validation platform that is capable of running orders of magnitude faster than emulation.
(more…)

Aldec Verification Tools Implement the ASIC Verification Flow

Tuesday, May 10th, 2016

Aldec-Verification-SpectrumAldec has, over the last 30 years, established itself as the preferred provider of high-performance, cost-effective verification tools for use in proving out complex FPGA designs. As the logic capacity and capability of FPGAs have increased, however, the distinction between FPGA and ASIC design has narrowed. A modern FPGA verification flow looks very much like an ASIC verification flow.

Small and large fabless companies alike need a reliable verification partner that suits their budgets while still providing a high level of support. To answer the call, we at Aldec have extended our spectrum of verification tools for use in digital ASIC designs.

A Basic ASIC Verification Flow

Managing verification for ASICs requires a well-defined verification plan.  Efficient verification planning starts with functional and design requirements in which requirements are mapped to verification methods, scenarios, goals and metrics, coverage groups, and results. Mapping entails traceability throughout the project that must be well maintained so that changes in the requirements will seamlessly reflect potential changes downstream to the elements of the verification plan.

While traceability can benefit any design, it is mandatory for safety-critical designs regulated by standards such as ISO-26262 for automotive, IEC-61508 for industrial and DO-254 for avionics.
(more…)

FPGA-Based Prototyping Q&A: 100 Million Gates and Beyond

Wednesday, July 30th, 2014

live-aldec-webinar

I am a Hardware Technical Support Manager. Ask Me Anything!

Earlier this summer, I joined a team traveling from Aldec’s R&D offices in Kraków, Poland to attend the annual Design Automation Conference (DAC) in San Francisco. As Technical Support Manager for Aldec’s Hardware Products Division, my goals for this event were two-fold. First, as we’ve made huge enhancements to our HES-7™ FPGA prototyping solution in the past year, I wanted to be there in person to share more about them in demos and presentations at the Aldec booth.

Secondly, and really my favorite part of DAC, I wanted to hear from engineers in the field looking for solutions to their real-world problems. Sometimes I have immediate answers for their questions, like the engineer who was not happy with their current solution’s implementation time or the fellow that needed support for in-house development boards. Occasionally though, I don’t have an immediate answer and instead they’ve given me valuable ideas that I get to take back home to my team so we can set to work developing solutions.

(more…)

Biggest Hits and Trends from ARM TechCon

Wednesday, November 6th, 2013

The recent ARM® TechCon Conference in Santa Clara was definitely the front-runner of my favorite conferences that I attended this year. Fun, informative and filled with software engineers, physical designers, design verification teams, and hardware engineers – ARM TechCon was the place to be to learn about the latest innovations from the embedded industry. Aldec was there showcasing our HES-DVM™ and HES-7™ platforms, which enable engineers to utilize emulation and FPGA-based prototyping to verify the latest ARM designs.

(more…)

Aldec and NEC reveal HLS shortcut at upcoming SoC Conference

Friday, October 18th, 2013

The University of California, Irvine (UCI) is popular for many things, but I recall during my school days that it was distinctly known among students for its underground tunnel network. The official story is that they were simply built to house heating and cooling pipes. Yet, the rumor persists that this complex maze of underground tunnels was constructed decades ago to provide safe passage for faculty members in case of student riots.

I’ll admit I would love to uncover these tunnels someday, unfortunately they have long been sealed off from curiosity seekers. I will, however, be at the UCI campus next week unraveling a different sort of maze for engineers attending the annual International SoC Conference. Aldec is once again a Platinum Sponsor for this popular academic conference, and this year I will be joined by NEC Corporation’s Dr. Wakabayashi to present a technical session:

(more…)

SCE-MI for SoC Verification

Wednesday, September 18th, 2013

Today’s System-on-Chip verification teams are moving up in the levels of abstraction to increase the degree of coverage in the system design. As designs grow larger, we start to see an increase in test time within our HDL simulations. Engineers can utilize Hardware-Assisted approaches such as simulation acceleration, transaction-level co-emulation, and prototyping to combat the growing simulation times of an RTL simulator. In this article, we’ll dive much deeper into the transaction-level co-emulation methodology.

(more…)

CST: Webinar series



Internet Business Systems © 2017 Internet Business Systems, Inc.
25 North 14th Steet, Suite 710, San Jose, CA 95112
+1 (408) 882-6554 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise